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(Invited Paper)

Absfract—The most relevant techniques that have either found or

should find useful application in analyzing microwave circuit per-

formances in the frequency domain are surveyed. The particular

needs of the microwave engineer are briefly discussed. Circuit

equation formulations in terms of voltages and currents and wave

variables are presented and the solution of the set of circuit equations

by sparse-matrix techniques is illustrated. Methods based on mnlti-

port connection are also reviewed.

The techniques for computing the first- and second-order sensi-

tivity are illustrated and a comparison is made between the direct

method and the transpose-matrix method, which is in certain cases

similar to the method based on the adjoint circuit.

I. INTRODUCTION

THE PROGRESS registered in recent years in the field

of computer-aided design has been considerable and

conceptually important, so much so that the computer is

no longer considered an auxiliary aid for checking the

validity of a solution obtained in other ways, but rather as

an indispensable instrument during all circuit design

phases. Present-day computer programs, in fact, permit

determination not only of the component parameter

nominal values but also their maximum permitted

spreads in relation to given tolerances on circuik response

functions and to the required production yield when a

large number of identical circuits must be redlzed. This is

made possible by the availability of analysis programs

that, besides being rapid, also allow precise determination

of network functions without limitations on component

composition or on circuit topology.

This paper describes the methods and algorithms that

are the basis for the most important and known programs

for analyzing linear circuits in frequency domain. Though

giving most attention to the methods specially conceived

for microwave circuits with distributed elements, a de-

scription is also given of those th@ are the basis for

lumped-element circuit analysis programs since, with

appropriate artifices and modifications, they could be

adapted for the analysis of dktributed component circuits.

A comparison between the various methods is also made

with a view, above all, to advising the reader of the dif-

ferent limitations deriving from them regarding circuit

topology and component composition.

No indications are given on the structure and use of the

programs since, being well aware that the employment of
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a program is strictly conditioned by its simplicity in use,

we do not believe this is essential for this paper. In fact,

there are no theoretical difficulties that prevent programs

from meeting the user’s requirements when these are

clearly defined [1]. An analysis program, whether used as

a routine of larger programs (optimization and tolerance

assignment programs) or as an independent instrument

for the designer, must have rapid execution, easy input

data preparation, and clear output data presentation.

Fast execution above all is required when a number of

analyses have to be made of one circuit with different

component values, as happens in optimization processes

and in component tolerance assigmnent. The other re-

quirement, that is, the simplicity of man–machine in-

teraction, is desirable both to overcome the designer’s

natural reluctance to use something new and to reduce the

time spent in inputautput operations [z]. It must be

possible, in particular, to modify component values and

circuit topology without changing the complete data file.

Besides, the printed output data must contain not only

the required network functions but also the input data

describing the circuit so that it is possible to recognize

even some time afterwards the circuit to which they refer.

The possibility of obtaining results graphically by means

of the same printer or, even better, by means of a plotter

or a cathode ray tube display is, finally, a useful though

not indispensable convenience.

To analyze a circuit means computing a certain number

of response functions in terms of the component param-

eters, circuit topology, and independent excitations being

given. The response functions may be determined both in

terms of voltages and currents in some nodes and branches

of the circuit, as is usually done with circuits composetd of

lumped components, and in terms of incident and re-

flected waves at some ports, as is often done with micro-

wave circuits. Correspondingly, circuit equations may be

formulated either in terms of voltages and currents or of

normalized wave variables. In the first case, the com-

ponents are defined by means of admittance, impedances,

or dependent generators; each constitutes a branch that is

connected between the nodes. In the second case, the

components are multiports connected through pairs of

ports. The circuit description is effected by means of
topological matrices that indicate the nodes between

which the branches are copnected or the pairs of adjacent

ports.

Circuit analysis, that is, determination of the volta~ges

and currents or of the normalized waves, implies the

solution of a system of equations whose number, accordhng
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to the method adopted, depends on the number ofnodes

and branches of the network or on the number of com-

ponent ports. This might cause limitations in the max-

imum number of circuit components in relation to com-

puter memory capacity and to the maximum running

time imposed.

The classical solution methods require a number of

operations proportional to the cube of the number of

equations [3]. Variouk methods have been proposed to

reduce computing time by taking advantage of the sparsity

of the coefficient matrices of the e“quation system. There

are two basic approaches. The first consists of progressive

elimination of all variables not needed for the requested

netwQrk functions. This approach has been most widely

used in microwave circuit analysis since only the external

port variables are generally of interest With the second

approach, computing time reduction is obtained by carry-

ing out only the arithmetical operations with nonzero

operands. It is based on examination of the sparsity

structure of the coefficient matrix and on generation of

a code or of a set of pointers and indices that provide the

“key” to execution of the arithmetical operations. It was
first used for power distribution network analysis and

subsequently for lumped and distributed circuit analysis.

A limitation on the use of many existing programs for

analyzing microwave circuits derives from the fact that

only two-terminal components are permitted. Because of

this, all the circuit components must be described by means

of lumped-element equivalent circuits. For transistors at

high frequency, numerous models have been proposed [4]-

[7]. However, it is not always easy in the microwave field

to characterize active and passive components by means

of lumped-element equivalent circuits, but it is always

possible to determine the parameters of any component

by direct measurements at its ports. In this regard it is

observed that both manual and automatic instruments

exist today that permit measurements of scattering

parameters on broad frequency bands both precisely and

very quickly [8]. In the opinion of the authors, shared

also by others [1], [9] the possibility of defining circuit

components by means of measured parameters must

therefore be considered as a necessary property of pro-

grams for microwave circuit analysis.

Alternatively, the port parameters of many passive

components (microstrip transmission lines, etc. ) can be

determined in terms of their geometrical dimensions and

the electrical characteristics of the materials forming

them. In this case it is enough to insert appropriate

routines in the analysis program to calculate the compo-

nent parameters. In this paper, however, no indication is

given regarding the operation of these routines since we
consider only the problem of determining circuit per-

formance in terms of the electrical parameters.

In Section II, the formulation of circuit equations is

described when branch voltages and currents and node

voltages are considered as unknowns, and the tableau

method and the ‘nodal admittance matrix are explained

along with the modified tableau and the mixed method.

In Section III, the circuit equation formulation is given

when normalized waves at component ports are con-

sidered as unknowns and the connec~ion scattering

matrix is described. Subsequently, in Section IV, the

methods based on multiport connection and, therefore, on

the computation of the port matrix of the complete cir-

cuit are given. A comparison is also made between the

methods, bringing out the inconveniences of some,

particularly in relation to accuracy in calculation and the

difficulties that might arise in describing the circuits.

In Section V, the sparse-matrix techniques for solving the

system of the equations are discussed. The method based

on execution code generation is dealt with in detail; thk is

particularly suitable for microwave circuits since their

dimensions are not usually very great. A comparison is

also made between the computation times required to

analyze a single circuit by means of two programs, one

being based on the method of connecting components in

pairs, the other on the generation and execution of the

code that solves the system of the equations describing the

circuit.

Finally, Section VI is devoted to computation of net-

work function sensitivities with respect to component

parameters.

The direct and the transpose-matrix methods are de-

scribed and a discussion is presented on the computing

effort required by each one. The equivalence that in

certain cases exists between the transpose-matrix method

and the adjoint circuit method is also shown.

To conclude, the results of analyses on some circuits are

given and the problem of component tolerance assignment

in relation to permitted performance tolerances is briefly

described. This problem is of particular interest to indus-

try, since circuit cost and mass production yield are often

greatly dependent on component value spreads.

II. CIRCUIT ANALYSIS IN TERMS OF VOLTAGES AND

CURRENTS

The solution of an electrical circuit in terms of voltages

and currents may be achieved in several ways depending

on the variables assumed as unknowns. In lumped-

element circuits the variables to be computed are the

branch voltages and currents and the voltages between

each node and the reference node.

Allowing only one circuit component per branch and

applying Ohm’s law” for each branch, a set of b equations

is obtained between vectors Vb and Ib of branch voltages

and currents at the b branches:

I
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where Eo and Jo are the vectors of independent voltage

and current generators; the Qv and QI matrices are made

up of rows whose elements are all O except for the 1 in

the entry relative to the branch to which the row refers.

The four groups of equations derive from branches con-

taining, respectively: y elements, independent current

sources, and voltage-controlled current sources; z elements,

independent voltage sources, and current-controlled volt-

age sources; voltage-controlled voltage sources; current-

controlled current sources. By way of example, the set of

equations describing the circuit in Fig. 1 is
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The constraints imposed by the topology supply the

other equations necessary to define the circuit com-

pletely. Applying the Kirchhoff voltage law to all circuit
branches and the Kirchhoff current law to all the circuit
nodes, except the reference node, the following two

topological relations can be obtained:

Aviv -vb=o (2)

ATIb = O (3)

where VN is the vector of the node voltages, A the branch

node incidence matrix [10], and AT its transpose. System

(2) contains b equations, each specifying the nodes be-

tween which each branch is connected. Each row of A

thus contains 1 and – 1 in the entries corresponding to

the two nodes, all the other elements being O. System

Fig. 1. Circuit chosen as example to show set of equations obtained
by applying Ohm’s law to each branch.

25”1

(3) contains n equations indicating which are the branches

connected to each of the n nodes excluding the reference

one. Each aij of A has + 1 in the entries corresponding to

the branches connected to the node, the sign depending on

the branch orientation.

Collecting together systems ( l)–(3) and indicating by

1 a (b X b) unit matrix, one obtains the set

T
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where T is the tableau matrix of the circuit [11].

The application of sparse-matrix techniques to the

circuit equations of system (4) is the sparse-talbleau

method, which has recently met with much approval,

particularly for the analysis of nonlinear circuits in the

time domain.

A method based on the solution of a system with

a smaller number of equations consists in assuming only

the node voltage vector VN as unknown and in expressing

system (3) in terms of these and of branch admittances:

YVN = JNO (5)

where JNO is the node impressed current vector and Y the

nodal admittance matrix. The lcth equation derives from

the application of Kirchhoff’s current law to node k.

Referring to the circuit in Fig. 2(a), one gets, for ex-

ample, the following equation for node 2:

‘Y2V1 + (& + ~3 + ~8)v2 – ~3v4 = ~lO. (6)

Y maybe obtained by means of the following rules easily

deduced from (3).

1) Each diagonal term yii is the sum of all the ad-

mittances connected to node i.

2) Each off-diagonal term yij is the negative sum of

all the transadmittances relative to current generators

connected to node z, controlled by node-j voltage, and of

all the admittances connected between node i and j.

The nodal admittance matrix does not lend itself to

describing circuits including current-dependent current

generators and dependent or independent voltage gener-
ators except by using special artifices such as the intro-

duction of extra dummy nodes and dummy components

[12]-[14]. By way of example, Fig. 3 shows that a cur-

rent-dependent voltage generator may be represented by

introducing two extra nodes and positive and negative

impedances [12]. These artifices, however, besides pro-
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Fig. 2. (a) Lumped-element circuit. (b) Lumped-+ement circuit
graph.
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Fig. 3. Current-dependent voltage generator and its modeling with
dummy nodes and components.

ducing an increase in the Y-matrix size, cause the presence

of coefficients equal to O on the main diagonal; this second

fact, as we shall see later, must be kept in mind when

solving system (5). Moreover, roundoff errors might
arise in the solution of (5) when, for example, the voltages

of two nodes connected by one or more branches assume

values very close to each other or when the Y coefficients

assume widely cliff erent values.

These inconveniences are not manifested with the

previously described tableau method. For the same

reasons the modified tableau method [15], [16] and the

mixed method [17], which are described hereunder, are,

in some cases, preferable. In both these methods, in order

to describe the topology, circuit branches are classified

as tree branches and links.1 Each link identifies a mesh

composed of the link itself and those specific tree branches

required to close the circuit. Each tree branch identifies

a cut set that consists of this tree branch itself and the

set of links cut by a closed line [see Fig. 2(b)]. Kirch-

hoff’s voltage law applied to the meshes and Kirchhoff’s

current law applied to the cut sets give the topological

relations

[1

v,
[c 11] =0 (7)

Vt

[1

z,
[lt – c“] =0 (8)

11

where Vt, Zt, and VZ, Zzare the voltage and current vectors

of the tree branches and links, respectively; 1z and 1t

are unit matrices, C is the branch-mesh matrix in which

cij = +1 if the branch j is in the mesh defined by link i,

the sign depending on the branch and mesh orientation;

C ij = O if the tree branch is not in the mesh i; CT is the

transpose of C.

Separating the variables relative to the tree branches

and the links, system (1) may be rewritten in the following

form:

H
z,

Vt
[H, H,] = [K] (9)

v,

where the meaning of the symbols Hl, H.2, and K can be

deduced immediately from (1).

Collecting together the topological systems (7), (8),

and the branch constitutive relations expressed by (9),

one obtains the following eystem:
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————,,————_—
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z, “

V1
——
v,

zl .

.

.0

o
——

K
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(10)

whose coefficient matrix is the modified tableau.

The method based on this approach, which has recently

been proposed, allows shorter computation time in its

authors’ opinion [16] compared to that required by the

complete tableau, without loss of solution accuracy.

I A tree is made up of a set of branches that, in the cirouit graph,
make it possible to reach all the nodes without forming closed pathe.
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Another method requiring tree search and the con-

sequent subdivision of the circuit branches into tree

branches and links is the well-known mixed method on

which ECAP II program is based [17]. The circuit branches

are subdivided into two types, y and z: generally, y

type with low admittance values and z type with low

impedance values. A tree is built up by choosing the

circuit branches in the following order: independent

voltage generators, dependent voltage generators, y

branches, and z branches. Independent voltage gener-

ators may not be chosen as links, nor current genera-

tors as tree branches, since these choices might imply

a violation of the Kirchhoff laws. Thus the branches are

classified in four categories: tree admittance branches,

tree impedance branches, admittance links, and im-

pedance links. The tree admittance branch voltages and

the impedance link currents are assumed to be inde-

pendent variables, and the circuit equations are written

by applying the Kirchhoff current law for the cut sets

identified by the tree admittance branches, and the

Kirchhoff voltage law for the meshes identified by the

impedance links.

By way of example for the cut set identified by branch 2

and for the mesh identified by link 6 in the circuit of

Fig. 2(b), the following equations can be written:

‘@V2 + ~5(~z + V3) + Y7(V2 + V3 – VI) – 18– 19 ‘~10

VI + 2818 = –E4. (11)

For the complete circuit the system can be written

L :!”H=P’:J ’12)

where Vut and I,L are, respectively, the tree admittance

branch voltage vector and the impedance link current

vector; Yt and NV. are the coefficient matrices deriving

from the cut-set equations, NZV and 21 the coefficient

matrices from the mesh equations; .ly~ is the vector of the

cut-set equivalent independent current generators, and

E=l the vector of the mesh equivalent independent voltage

generators.

System (12) cannot generally be obtained by simple

rules ~ithout searching the tree or using the topological

matrices. This is not, however, the proper place to go into

greater detail and the reader is referred to the works by

Branin [10], [17].

III. CIRCUIT ANALYSIS IN TERMS OF WAVE VARIABLES

The behavior of a microwave circuit may also be de-

scribed in terms of the normalized wave variables at the

ports of the component multiports.z Given a circuit with

m component multiports, for each component with

scattering matrix Si the vectors ai and bi of incident and

reflected waves at its n. ports are related by the following

z It is always possible to transform a lumped-element network
into a circuit made up of multiports connected through pairs of
pOtiS [18]–[21].
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equation:

bi = Siai. (13)

An independent generator is described, instead, by the

relation

b, = Sgao + Cg (14)

where q, is the impressed wave.

Considering all the components,

linear equations whose matrix form

b= Sa+c

where

a=

and

al”

a2
.

am,

s=

,b=

b,

1

b, ,
.

b.

we have a system of

S,. o.o
. . . . .
0 ‘Si-O

1
. . . . .
0 .O. sm

c1

C2
.

cm.

(15)

(16)

The connections between the m components impose

constraints on the vectors a and b; in fact, incident and

reflected waves at ports j and k connected together must

satisfy the following relations (see Fig. 4):

if the normalization numbers are the same. The relations

for all the circuit component ports may be put in the form

b=I’a (17)

where r is the connection matrix whose elements are all

null except the 1’s in the entries corresponding to pairs of

adjacent ports [22]–[25].3

Substituting (17) into (15) and solving for a by setting

W=r– S (18)

I\ 1
,!

)..--~,~.
/’ ‘\

----- 1

1
!

Fig. 4. Constraints imposed by connection between adjacent ports.

8 It would be easy to define the connection matrix, also, when
different normalization numbers are chosen for adjacent ports [26].
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we have

Wa=c (19)

where c is the vector of the impressed waves and W is the

connection scattering matrix. Its main diagonal elements

are the reflection coefficients at component ports; the

other W elements are all null except those relative to

ports belonging to the same component (the transmission

coefficients) and those relative to ports connected to-

gether (the r elements). Numerical values of nonzero

elements change with the frequency except the 1’s in-

dicating connections.

IV. MULTIPORT CONNECTION METHODS

Considerable reduction of computing time and memory

space requirements in analyzing large circuits can be

achieved by dividing the circuit into subcircuits and cal-

culating for each of them one of its port matrices. Sub-

sequently, the subcircuits are interconnected and, finally,

the matrix relative to the ports of the complete circuit is

determined.

A method based on these principles has been proposed

by Murray-Lasso for the BELLNAP program [12], [27]

employing the indefinite admittance matrix, which is

simply the nodal admittance matrix defined in Section

II, but referred to a datum node outside the circuit. The

nodes of every subcircuit are divided into internal and

external. By eliminating the variables relative to the

internal nodes, one obtains the indefinite admittance

matrix relative to the external nodes.

Every indefinite admittance matrix is subdivided as

follows :

H=K X2 ’20)
where 1. and Ve are the vectors of the currents and voltages

relative to the external nodes, and Z~ and Vi are those

relative to the internal nodes. Since no generators are

connected to the internal nodes, we can take Z~ = O and,

solving with respect to Vi in the second set of equations of

(20), one has

vi = – Yii-’ Yiev.. (21)

Substituting (21 ) in the first set of (20) one gets

z. = Yeve (22)

with

Ye = Y.e – YeiYii–’ Y;e (23)

which represents the indefinite admittance matrix with

respect to the external ports of each subcircuit. When the

subcircuits are connected together, the indefinite ad-

mittance matrix for the external nodes of the complete

circuit is calculated using the same procedure.

Some programs that use the S-matrix formulation

[23], [24] are also based on the same principle, that is,

on determining the port matrix of the circuit obtained by

interconnecting a number of components. These programs

are mainly microwave circuit oriented.

Evaluation of the scattering matrix of a circuit com-

posed of multiports connected through pairs of ports in

terms of component S parameters is effected by dividing

component ports into connected and nonconnected ones.

Then by partitioning system (15) and letting c = O,

since independent generators will be considered connected

to external ports, one obtains

KI=E Xl (24)
where ap, bp and a., b, are the normalized waves at the

p external ports and at the c internal connected ones. The

constraints between connected ports yield

b. = ra. (25)

where r is the connection matrix previously defined in

Section III. From (24) and (25), by first eliminating

b., one obtains

a. = ( r —5’..)‘?%pup. (26)

Then, by eliminating a.,

b, = Spa, (27)

where

sp = Spp+ S,. ( r – S..)–WCD (28)

is the scattering matrix of the microwave circuit at its p

external ports. It can be determined in terms of the S

matrices of its component multiports by relation (28).

For a circuit comprising many components, the computing

time is, however, too long due primarily to the inversion

of a matrix with order equal to the number of connected

ports.

Great running time reduction is obtained in the program

SCAMAT [23] by connecting the m component multiports

of the complete circuit two at a time and determining the

S matrix of the resulting subcircuit every time. In such a

manner, after (m-l ) applications of (28), the S matrix

of the complete network is computed. The number of

arithmetical operations necessary to compute the S

matrix for a given circuit topology depends on the order

according to which the components are connected to each

other.
In order to minimize computing time a connection

sequence based on an easily programmable rule has been

proposed that implies a number of algebraic operations at

all times very near to the minimum, whatever the circuit

topology. The rule consists of connecting every time the

two components whose resultant multiport has the

smallest number of ports.
The application of this method to circuits including

lumped elements is done by transforming every com-

ponent having n terminals into a multiport with n ports.

The transformation is carried out by associating a ground

terminal with each component terminal, and these
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terminal pairs are considered as ports [19], [20]. When

a component has one of its n terminals connected to

ground, it is considered a rnultiport ha&g (n-1) ports;

all the ports in such a case derive by pairing the ground

terminal with the other (n-l ) terminals. The multiports

thus obtained are connected together to form the “network.

Since the program connects only pair of ports, auxiliary

multiports that transform every node with k branches

into a multiport with k ports are introduced. These

auxiliary rnultiports are parallel tees (Fig. ‘5) introduced

at the rate of (lc-2) tees for every node connecting k

branches. The introduction of the auxiliary nmltiports

and the transformation of every n-terminal component

into an (n-l) port or n port is made automatically by the

program through interpretation of the input data.
In addition to the characterizing parameters, the data

for every component indicate to which nodes its terminals

are connected. The interconnection modalities between

real and auxiliary components are then’ found and the

connection sequence stated. After” this preliminary

phase, which is performed only once for a given circuit

with m components, the execution phase begins and con-

sists of applying “(28) (m-l) times for every frequency

point.

A similar formulation has been adopted in the program

General [9]. It requires the user to decompose the circuit

into wire-coupling multiports and original components,

then a formula similar to (28) is applied repeatedly,

starting from the last subnetwork. The circuit decompo-

sition required appears, however, too cumbersome for

the user.

Determination of the matrix of the multiport resulting

from the connection of two components can be effected

with more simple rules than (23) or (28) if matricial

representation of the components is suitably chosen.

Indeed, rules that determine the matrix of the multiport

resulting from the connection of two multiport com-

ponents are well known [28]. For the various types of

connections, they require the components to be defined

according to diflerent matricial representations. The

simplicity of these connection rules has brought about

their widespread use in a number of general and special-

purpose programs [9], [29]–[35]. In these programs the

matrix relative to the external ports of the complete

parallel - Tee

o

Fig. 5. Parallel tee as auxiliary multiport.
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circuit is determined by connecting the components in

twos, each time determining the matrix of the resulting

multiports in accordance with rules codified in library

routines. Table I shows, by way of example, some of the

most’ widely used rules in the case of connections between

2-port components. It may, however, happen that the

matricial re’presentation required by the type of the con-

nection to be made may not exist for some components.

Besides, the method may call for numerous matrix trans-

formations, which sometimes cause a loss of accuracy.

The types of connections and the sequence in which they

are made are generally decided by the user. This last, ap-

parently difficult, operation is considerably simplified

by using high-level languages for circuit description. A

particularly interesting one is MARTHA, proposed by

Penfield [21], [35]. It consists of defining a certain

number of wiring operators by means of which connections

between components may be simply and concisely identi-

fied and described. The order of writing the operators

establishes the order for carrying out the connections

by the program. By way of example the simple circuit in

Fig. 6 is described using the wiring operators shown in

Table I. The number of wiring operators permitted by

TABLE I
VARIOUS TYPES OF CONNECTION BETWEEN Two PORTS—MATRIX

OPERATIONS INVOLVED AND M. TEA SVIRING OPERATORS
—.

CUWECTION TYPE

Parallel

%rles

s%riee-
pardld

Parallel

swim

cascade

-.__. _---__.._,

mY, ;

Y~y
L-----------------

;-_._----------_T

mz, :
z~z____.___2_:__--_j

~---------- .----_n

mH! ‘

H2
~Hi..... ------- . ..___J

WIITG, ,

~“
G* \

:G
L .- . . ---------------

—

ktrix Qp@ret.w

Y .V, +V2

z .Z,+Z2

H =H,+H2

G = G,+G,

T= T1x T2

WSS i

WSP

WPS

1Wc

I

kl-Yt!J-
Fig, 6. Example of circuit description by means of MAIRTHA

language. MARTHA description: (s1 WPSSJWC((S,wc SJWSPsJ.
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MARTHA is such as to allow considerable generality in the

type of circuit that maybe analyzed.

V. SPARSE-MATRIX APPROACH

Many methods have been proposed for the solution of

linear systems with sparse coefficient matrices [361-[39].

Evaluation of their efficiency is not, however, one of the

aims of this work, so the description, though brief, is

limited to the L U-factorization method [3], which is

most frequently applied in the field of electric networks.

According to this method the solution of the system

Mx = c is carried out iirst by factoring M into the

product of two matrices, a lower triangular matrix L and

an upper triangular matrix with 1’s on the diagonal U

M=LU=

-11, -0.0.0

. . . . . . .

~kl .I?kk. o.()

. . . . . . .

1,1 .l~k.lii.O
. . . . . . .

Jn, . lnk . lm, . in.d

[

1.UM.
... .

0 “1.
. . . . .

I

0-0.
. . . .

0-0.

Ui j

0

U1.
.

‘t-$ka
1. .

1

Ujn

.

1

(29)

The elements of L and U are determined by recurrence

formulas as follows:

k–1

& = ‘m;k – ~ lipupk, ikk
~=1

ukk = 1

k-1

ukj = (mkj — ~ lkfi’upj) /lkk, j>k (30)
~=1

for k = 1,2, . . . ,n, where n is the matrix dimension. Then

by solving the two triangular systems

Ly=c Ux=y (31)

using “forward elimination” on Ly = c and “back sub-

stitution” on Ux = y, the unknown veetor x is obtained

[3]- This is performed by applying the recurrence
formulas:

i– 1

Yj = (Ci — E Zjpyp) /ljjy ~ = 1,2,. .-,n
JL==l

Xj=Yj — % uiwxp, ~ = n,n – 1,...,1. (32)
/Fj+l

All the elements of L and U can be stored & a matrix:

Q= L+U–l (33)

1 being tit matrix. Any qjk of Q is O if both mjk of M

and all the products qjiqik, l<i<min{j-l,k -1}

are O. Therefore, the number of nonzeros in Q depends on

the ordering of rows and columns in M, as is discussed

later. The nonzeros in Q in the entries corresponding to

zeros in M are currently called “fills.”

A great reduction in execution time is obtained with the

reduced Crout method [40], according to which only the

nonzero operands are considered in computing the non-

zeros of Q. Two different strategies are used to this end.

The first consists of creating a sequence of indices and

pointers that establish the type of operation to be carried

out and the position of the operands in the tables where

the operands are stored [41]–[43]. The second method

consists of generating a no-loop no-branch code con-

taining the instructions to perform all the necessary

operations.

The second method is very fast in execution but requires

large memory space due to the need to store the generated

code and high central processing unit time to generate the

code itself. On the other hand, the first method, though

slower in execution, requires less time for preparation of

the sequence of indices and pointers and much less memory

space. Memory requirements make the code generation

method unsuitable for very large networks ‘like power

distribution networks [44], while it is widespread for

electronic circuit analysis both with lumped [11], [16]

and distributed elements [25].

The solution code may be generated either in machine

language or in a high-level language such as Fortran.

In the first case it requires shorter execution time but has

the inconvenience of being machine dependent. Gener-

ation time, execution time, and storage requirements

depend on the length of the code, which depends in

turn on the number of nonzeros in Q and c and, therefore,

on the number and position of nonzeros in M.

With the aim of minimizing code length, numerous re-

ordering algorithms of the M-matrix coefficients have been

proposed. In all these algorithms the accuracy problem

must be kept in mind; this requires the rows and the

columns of the M matrix to be rearranged so that the

diagonal elements are nonzero, since they are used as

divisors in (30) and (32). To this end, depending on the

circuit matrix adopted, some rules are established to

avoid pivoting on the critical elements.

For circuits described by the nodal admittance matrix

(M = Y), the diagonal term m,; represents the sum of

admittances connected to the ith node and, therefore, it is

different from O except in particular cases.4 For this reason

the reordering algorithms for Y matrix keep these terms

on the diagonal while ordering the rows and columns to

minimize the code length. This is equivalent to circuit

node renumbering. This procedure is based on the sup-

position that nonzero elements on the Y diagonal are a

snfhcient guarantee that the elements on the Q diagonal

4 When certain components are modeled by introducing extra
dummy nodes or dummy components, the cm-respondmg diagonal
positions cannot be pivoted [13].
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will be nonzero. The node renumbering algorithms most

frequently used for the Y matrix are reported in the

following [41], [43], [44].

1) The nodes are ordered so that the number of non-

zeros in the corresponding rows are nondecreasing.

2) At every jth step the node is selected whose cor-

responding row has fewer nonzeros on the right of the

(j – l)th entry.

3) Select as jth step the node whose corresponding row

and column, when. used in factorization, would cause the

smallest number of fills.

For the connection scattering matrix W, on the other

hand, as described in Section III, the diagonal elements

represent the reflection coefficients of the circuit com-

ponent ports and, therefore, being very near to O in

matched conditions, cannot be chosen as pivots. However,

in system (19) every row of W contains the constant 1,

deriving from r, which could be an ideal pivot because

it allows great precision, independent of frequency, and,

at the same time, divisions are avoided. In reality, roughly

half the 1’s are modified in the course of the factorization

process, but rarely do the modified values become O and

only in anomalous cases. This method has been adopted

in a recently realized program for microwave circuit

analysis [25] with the following ordering strategy: the

pair of rows relative to adjacent ports are considered

together and ordered so that each pair has a number of

nonzeros not greater than that of the successive one; in

every pair the row with fewer nonzeros precedes the other;

the columns are then ordered to place all the 1’s of r on

diagonal.

The programs adopting the code generation techniques

are, therefore, structured in two phases. In the first, after

data input and interpretation, coefficient matrix row and

column ordering is established according to the algorithm

used and the solution code is generated. In the second

phase the matrix coefficient values arc determined for

every frequency point and then the code is executed,

giving the unknown variable values in terms of which the

requested network functions are determined.

The time required for the first phase is generally very

high, but it should be remembered that for a given circuit

the code is generated only once, while the code itself is

executed many times and may be repeated at any later

time if it is stored in a permanent file. Analogous con-

siderations may be done for the structure of the programs

creating a sequence of pointers and indices.

However, for very simple circuits not requiring many

analysis repetitions, it may be more convenient both for

computing time and memory space to use programs of the

type described in Section IV, whose preliminary phase is
less complex. In order to supply quantitative information

the circuit in Fig. 7, representing a thin-film strip-line

branching filter [25], has been analyzed with two pro-

grams realized by the authors: the BMT program adopting

a sparse-matrix technique and the SCAMAT program ef-

fecting connection of multiports two at a time. The

(a)

(b)

Fig. ‘i. (a) Thin-film strip-line branching filter. (b) Description for
analysis program.

(seJs )

15

I

10.

5-

Oe *
0 100 200 n

Fig. 8. Computation time required by the two programs SCAMAT
and BMT versus number of analyses effected for branching filter
in Fig. 6. Dotted line refers to case for which execution code
has already been generated and compilsd.

relative computing time versus the number of executions

is shown in Fig. 8.

This figure shows that for the circuit analyzed, the first

phase of the BMT program is ten times slower, while the

second phase is seven times faster. Then, when more than

120 executions (different frequency points or parameters

values) are required, the code generation method is :more

convenient. However, when the code is already available,

the dotted line must be considered and the convenience

of the BMT program is evident.

VI. FIRST- AND SECOND-ORDER SENSITIVITY

A performance generally required of circuit anaJysis

programs is the computation of the partial derivatives

(sensitivities) of the network functions with respect to the

variables on which the component parameters depend. It

is useful for the designer to know them both in ordler to
have an indication of circuit criticality relative to, the

variables themselves, and in order to utilize the sensi-
tivities in calculating particular network functions (group

delay, for example) and in optimization processes.

Simple determination of the s~nsitivities by means of

the variational method may cause computation errors
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that depend on the intrinsic precision of the program and

the increment chosen for the independent variables.

Computing time may, besides, be too high when deriva-

tives with respect to many parameters are requested. It is

for these reasons that other techniques are used in the

important programs; among these the adj oint circuit

method has met with much favor in recent years [45]–

[61]. It must, however, be noted that the most convenient

technique depends on the analysis method used by the

program. The best known among recently proposed

methods are illustrated below, and a comparison is made

between them in relation to the adopted method of

analysis.

Where circuit analysis consists of the solution of a

system of the type

A!lx=c (34)

where x is the circuit variable vector (voltages, currents,

or normalized waves) and M is a matrix that takes

topology and circuit composition into account (nodal

admittance, matrix, mixed matrix, connection scattering

matrix, etc. ), computation of the partial derivatives of the

vector x ~ith respect to any single parameter p o~ which

the circuit components depend may be carried out by dif-

ferentiating (34) :

iw~;=-~:x+:. (35)

This equation may be solved for dx/dp by evaluating the
. .

right-hand side vector:

E)p ‘ ap
.,

which may be calculated when 8i14/dp and dc/dp are

known and x, by solving (34) j has been determined.

Determination of vector 6’x/dp by means of (35) re-

quires only forward and back (FB) substitution since the

L U factorization already done for the solution of (34)

may be utilized. If sparse-matrix techniques are adopted,
FB substitution may be performed by executing the same

code (or the same set of pointers and indices) as that

generated for the analysis; provided that the code has

been generated w~thout’ considering the sparsity of

vector c, since its sparseness structure is generally dif-

ferent from that of c’.
This direct method permits determination of the

sensitivity of all the elements of x with respect to a single

parameter p, and the computing effort involved is only

slightly higher than that of the original analysis. If the

sensitivities of all elements of x are requested with respegt

to several parameters, as many FB substitutions are

required as there are parameters.

If the sensitivities of only one element of x are requested

with r,espect to many parameters, it may be convenient

to adopt the adjoint network m,ethod proposed by Director

and Ftohrer [45], [46], deriving it from Tellegen’s tlieor~m

[62], [63]. This method has in recent years been subject

of numerous studies [45]–[61] and the reader is referred

to them for detailed information. Here, a method is pre-

sented that provides (in certain cases) results similar to

the adjoint method. The derivation is quite straight-

forward and involves only matrix operations [25], [65].

Indicating by

yj~=[o 0...0 1 0...0] (37)

a row vector whose elements are all null except a 1 in

position j, we have

13xj

13p
_= ~iT;. (38)

Keeping (35) in mind this becomes

having indicated by

& = (yjTM-’)T = (MT)-’yj (40)

the vector of the unknowns of a system of equations whose

coefficient matrix is equal to the transpose of that char-

acterizing the circuit being analyzed and having Yj as

its right-hand side vector.

Supposing for simplicity dc/dp = O, (39) is reduced to.

8Xj

ap =
– g,”: x (41)

which can be used to compute sensitivity of variable xj

with respect to any p parameter when vectors x and &

have been computed by solving systems (34) and (40).

This method, which in the following is called the trans-

pose-matrix method, is in some cases similar to the

adjoint method. In fact considering, for instance, the con-

nection scattering matrix (that is, letting M = W) we

have from (18)

WT=(r– S) T=r–sT

being r = rT; thus WT may be interpreted as the con-

nection scattering matrix of a new circuit with the same

topology as the one being examined and components

whose scattering matrices are the transposes of the cor-

responding ones in the original circuit. In this case, &T

represents the vector of the incident waves at the new

circuit component ports with excitations stated by yi.
The equivalence be$ween this method and the adjoint

circuit method is then evident [48].

The same consideration can be made with reference to

the nodal admittance rnatrix~ Indeed, & in this case may

be interpreted as the nodal voltage vector of the adjoint

circuit, which, as it is known, has a matrix equal to the

transpose of the original one and is excited as established

by yj [51]. ‘

When the mixed method is adopted for analysis, the

transpose of the coefficient matrix in (12) does not
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coincide with the matrix of the adjoint circuit due to the

sign reversals of its off-diagonal mbmatrices. However,

the transpose matrix method can be equally adopted and

the results are identical to those derived by means of the

adjoint network.5

In order to make the reader aware of the computing

effort in determining sensitivity with (41), we observe

that computation of & involves only a single FB substitu-

tion [14], [64] for the following reason. Since

MT = (LU)T = UTLT = .&u

it is not necessary to repeat factorization in order to

compute z and %, as these are obtainable through

transposition of U and L, respectively. When sparse-

matrix techniques are used with code generation it should

be noted that the FB-substitution code generated for the

analysis cannot be utilized; thus a modified code should be

generated for the FB substitution applied to A3 and w..

If, however, MT has the same sparseness structure as M,

differing at the most in the values of some nonzero coef-

ficients, then & can be determined starting from MT by

executing the L U-factorization and FB-substitution

codes already generated for the analysis. When M repre-

sents the connection scattering matrix W and if all the

parameters of the components are considered to be dif-

ferent from O the analysis code may be used; the same

thing takes place with the nodal admittance matrix if we

consider as nonzero the coefficients in locations sym-

metrical to those of the dependent generators. Thus with

two complete code executions in addition to the sup-

plementary operations required by (41), the sensitivity

of one variable xi may be computed for many parameters.

A quantitative comparison between this method and

the direct one cannot be effected in general. It is, however,

noted’ that the direct method is preferable when the

derivatives of many variables with respect to few param-

eters are required, while the transpose-matrix method is

more convenient when the derivatives of few variables

with respect to many parameters are to be calculated.

However, it is observed that if sparse-matrix techniques

are used, the choice between the two methods may be

conditioned by other factors such as, for example, general

organization of the program.

Calculation of sensitivity by the direct method and the

adjoint circuit are not equally convenient when multiport

connection methods, described in Section IV, are adopted

for the analysis. In this case, in fact, the variables relative

to internal nodes or ports of the circuit are not normally

calculated. It is, however, always possible to include

routines in the program that, on the basis of suitable

algorithms [56], [57], [66], make it possible to calculate

the voltage and currents or the wave variables relative to

the internal ports in terms of component parameters

and of the impressed vectors. These routines may, how-

ever, bring about a considerable increase in program

complexity and thus, considering also that these programs

are usually utilized for analyzing circuits that are not too

large and that have a particular topology, it may be con-

venient to do the sensitivity computation by means of
variational techniques. These techniques have the ad-

vantage of directly supplying the sensitivity of the re-

quired network functions, which are often complicated

functions of the derivatives dx/8p.

To compute second-order sensitivity, (35) may be dif-

ferentiated with respect to a new variable q and, for

simplicity, supposing c independent of p and q, one ob-

tains the second-order sensitivity expression

As in the first-order sensitivity case, by introducing vector

~j the following relation is obtained:

which allows computation of the second-order sensitivity

of variable xi with respect to parameters p and q.

The application of (43) in determining the second-order

sensitivity is very convenient, especially when the analysis

program is based on the generation of the LU-factori-

zation and FB-substitution codes. In fact it involves two

complete code executions for determining vectors x and

Q and two more executions of the FB-substitution’ code

for evaluating 8x/ap and ax/aq. When the second-order

sensitivities of the same variable ~j with respect to WL

different parameters have to be computed, the FB-

substitution code must be executed m times. For a more

detailed discussion the reader is referred to [78]..

VII. RESULTS OF SOME ANALYZED CIRCUITS

The analysis programs based on the methods described

in the preceding sections allow determination for every

assigned set of component parameter values and for every

frequency point the values of the circuit variables con-

sidered as unknowns. In terms of these variables, the

response functions of the circuit required by the user

must be computed. For thk reason, programs usually

contain library routines for computation of the most

common functions such as: voltage and current insertion
gain;inputandoutput impedances; 10SS attenuation;

reflection coefficients at circuit ports; etc. It is often

interesting also to determine group delay and/or the

sensitivities of the above functions with respect to certain

parameters; to this end one must also know the partial

derivatives of the circuit variables with respect to the

parameters themselves. When the functions to be cal-

culated are not contained in the library, it must be possible

for the user to insert new specially written routines into

5 See Branin [65] for a detailed discussion. the program.

6 The sparsit y of 8M lap and de/8p may be taken into account. In order to give the reader an idea of the functions that
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Fig.9. Computed transmission coefficients S,land S,lofbranching
filter in Fig. 6.

may be requested, the results of the analyses carried out

by the authors on some circuits are reported. Numerous

other examples of considerable interest are described in

the works mentioned in the References.

With reference to the circuit already shown in Fig. 7

representing a branching filter implemented on an alumina

ceramic substrate by thin-film technology, the amplitudes

of the transmission coefficients Sal and S21 have been

computed and plotted versus frequent y in Fig. 9. The

analysis was done with the BMT program, which utilizes

the connection scattering matrix W to describe the circuit

and adopts the sparse-matrix technique with code gener-

ation to determine the normalized wave vector. The circuit

has been described for the program as shown in Fig.

6(b), connecting port 1 to a matched generator with

impressed wave c~ = 1, ports 2 and 3 to matched loads,

and all the other ports to open-circuit terminations. The

transmission coefficients Szl and Ssl coincide, in this case,

with the waves bz and bs reflected by ports 2 and 3:

S21 = (bz) .l=l 831 = (b3) .,=1.

The condition al = 1 is imposed by the generator con-

nected to port 1. The S parameters of the coupled-trans-

mission microstrip have been computed by means of

routines [67] associated to the program in terms of the

geometric dimensions and electrical characteristics. For

the same circuit, using the direct method illustrated in

Section VI, computations have been made for group delay:

where &l = ~ bs and the magnitude sensitivity M, with

respect to the permittivity e of the ceramic substrate is

The computed results are shown in Fig. 10.

The circuit in Fig. 11 has been analyzed by the SCAMA~

program, which is based on the multiport connection

method after transformation of the circuit components
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Fig. 10. (a) Group delay .31 and (b) sensitivity M., with respect

to permittivity c of transmission coefficient S,, of filter m Fig. 6
versus frequency.
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Fig. 11. Broad-band transistor amplifier for 960-channel FDM
system (courtesy of Telettra Laboratory).

into multiports by means of the introduction of auxiliary

multiports. It represents a broad-band transistor amplifier

for a 360-channel frequency division multiplexing (FDM)

system. Transistors and transformers have been char-

acterized by measured parameters. The computed voltage

insertion gain G and return losses pi and p. at input and

output ports are shown in Fig. 12. In the same figure the

values measured at several frequency points are also

given; the discrepancy between computed and measured

values are due to the inability of the instrument to

measure very high values of return loss.



MONACO AND TIBERIO: ANALYSIS OF MICROWAVE CIRCUIT$

dB

I
‘\

50 \ !3
\ ~i

~1 \
40 G

,>

30

20-

10

0, .

10’ 10’ 105 106 10‘

.
(l=]

o

1

1,1

1.01—
f (Hz]

Fig. 12. Computed voltage insertion gain G and reflection coeffi-
cients at input andoutput ports of amplifier in Fig. 10. Experiment
points—O: G; O:pt; A: p..

An application of analysis programs as routines of larger

programs is supplied with reference to the circuit in Fig.

13, which represents a microstrip negative-resistor tran-

sistor amplifier tunable in the band 2.05–2.35 GHz, the

envelope of its computed tuned voltage insertion gain

being shown in Fig. 14. For this amplifier the transistor

parameter tolerances and the production yield of a large

number of circuits had to be determined given the assigned

tolerances of permittivity c and thickness d of the ceramic

substrate and the specified circuit performance [75].

These are expressed by the following relations: a) tuned

insertion gain G = 12–16 dB in the RF band B = 2.05–

2.35 GHz; b) l-dB bandwidth Bw > 50 MHz at any

tuning frequency; c) tunability in the whole RF band by

a trimmer capacitor CtU. = 0.2–2 pF.

To this end, the acceptable regions have been de-

7

Fig. 13. Thin-film strip-line negative-resistance transistor amplifier
(courtesy of Telettra Laboratory).
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Fig. 14. Envelope of computed tuned voltage insertion gain of
amplifier in Fig. 12.
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termined in the plane (C)8) and for three transistors T1,

Tz, and T, with a program that, by means of repeated

analyses (effected with BMT) searches for the contours of

these regions. These contours are shown in Fig. 15 where

the region of the possible values of c and 8 is shaded. It is

seen from the” same figure that since the whole area lies

within the acceptable region relative to Tl, the production

yield is 100 percent, while it is almost completely non-

existent for transistors Tz and Tx. In this way it has been

possible to determine the admissible tolerances for the

transistor parameters.

The component tolerance assignment in relation to a

given production yield is a problem being studied at

present, as can be seen from recently published works

[68]-[77]. For this, as in the case of op~imization prob-

lems, it is very important that the programs for network

function computation and the respective sensitivity be

particularly fast, as is possible by adopting solution

methods based on the sparse-matrix techniques described

above.

VIII. CONCLUSIONS

The methods most frequently adopted by analysis

programs of linear circuits in frequency domain have been

described, giving greater attention to those best suited

for use in microwave ciicuits. A comparison of the methods

has been made emphasizing execution speed as well as

limitations imposed on the component nature and the

circuit topology.
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Section V has been dedicated to the solution methods ~~Computer-Aia!ed Design) (Corresp.), voLCT-20, pp. 628-634,

based on sparse-matrix techniques.

Determination of sensitivity by the direct and the

transpose-matrix methods has been dealt with, and the

convenience of using one or the other method in relation

to the number of parameters and analysis methods has

been discussed.

In Section VII some examples of analyzed circuits have

been shown, referring, in particular, to the problem of

component tolerance assignment.
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