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Computer-Aided Analysis of Microwave Circuits

VITO A. MONACO, meMBER, 1EEE, AND PAOLO TIBERIO, MEMBER, TEEE
(Invited Paper)

Abstract—The most relevant techniques that have either found or
should find useful application in analyzing microwave circuit per-
formances in the frequency domain are surveyed. The particular
needs of the microwave engineer are briefly discussed. Circuit
equation formulations in terms of voltages and currents and wave
variables are presented and the solution of the set of circuit equations
by sparse-matrix techniques is illustrated. Methods based on multi-
port connection are also reviewed.

The techniques for computing the first- and second-order sensi-
tivity are illustrated and a comparison is made between the direct
method and the transpose-matrix method, which is in certain cases
similar to the method based on the adjoint circuit.

I. INTRODUCTION

HE PROGRESS registered in recent years in the field

of computer-aided design has been considerable and
conceptually important, so much so that the computer is
no longer considered an auxiliary aid for checking the
validity of a solution obtained in other ways, but rather as
an indispensable instrument during all circuit design
phases. Present-day computer programs, in fact, permit
determination not only of the component parameter
nominal values but also their maximum permitted
spreads in relation to given tolerances on circuit response
functions and to the required production yield when a
large number of identical circuits must be realized. This is
made possible by the availability of analysis programs
that, besides being rapid, also allow precise determination
of network functions without limitations on component
composition or on circuit topology. ‘

This paper describes the methods and algorithms that
are the basis for the most important and known programs
for analyzing linear circuits in frequency domain. Though
giving most attention to the methods specially conceived
for microwave circuits with distributed elements, a de-
scription is also given of those that are the basis for
lumped-element circuit analysis programs since, with
appropriate artifices and modifications, they could be
adapted for the analysis of distributed component circuits.
A comparison between the various methods is also made
with a view, above all, to advising the reader of the dif-
ferent limitations deriving from them regarding circuit
topology and component composition.

No indications are given on the structure and use of the
programs since, being well aware that the employment of
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a program is strictly conditioned by its simplicity in use,
we do not believe this is essential for this paper. In fact,
there are no theoretical difficulties that prevent programs
from meeting the user’s requirements when these are
clearly defined [17]. An analysis program, whether used as
a routine of larger programs (optimization and tolerance
assignment programs) or as an independent instrument
for the designer, must have rapid execution, easy input
data preparation, and clear output data presentation.
Fast execution above all is required when a number of
analyses have to be made of one circuit with different
component values, as happens in optimization processes
and in component tolerance assignment. The other re-
quirement, that is, the simplicity of man—machine in-
teraction, is desirable both to overcome the designer’s
natural reluctance to use something new and to reduce the
time spent in input—output operations [2]. It must be
possible, in particular, to modify component values and
circuit topology without changing the complete data file.
Besides, the printed output data must contain not only
the required network functions but also the input data
describing the circuit so that it is possible to recognize
even some time afterwards the circuit to which they refer.
The possibility of obtaining results graphically by means
of the same printer or, even better, by means of a plotter
or a cathode ray tube display is, finally, a useful though
not indispensable convenience. . ’

To analyze a circuit means computing a certain number
of response functions in terms of the component param-
eters, cireuit topology, and independent excitations being
given. The response functions may be determined both in
terms of voltages and currents in some nodes and branches
of the circuit, as is usually done with circuits composed of
lumped components, and in terms of incident and re-
flected waves at some ports, as is often done with micro-
wave circuits. Correspondingly, circuit equations may be
formulated either in terms of voltages and currents or of
normalized wave variables. In the first case, the com-
ponents are defined by means of admittance, impedances,
or dependent generators; each constitutes a branch that is
connected between the nodes. In the second case, the
components are multiports connected through pairs of
ports. The circuit description is effected by means of
topological matrices that indicate the nodes between
which the branches are connected or the pairs of adjacent
ports.

Circuit analysis, that is, determination of the voltages
and currents or of the normalized waves, implies the
solution of a system of equations whose number, aceording
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to the method adopted, depends on the number of nodes
and branches of the network or on the number of com-
ponent ports. This might cause limitations in the max-
imum number of circuit components in relation to com-
puter memory capacity and to the maximum running
time imposed. /

The classical solution methods require a number of
operations proportional to the cube of the number of
equations [3]. Various methods have been proposed to
reduce computing time by taking advantage of the sparsity
of the coefficient matrices of the equation system. There
are two basic approaches. The first consists of progressive
elimination of all variables not needed for the requested
netwark funections. This approach has been most widely
used in microwave circuit analysis since only the external
port variables are generally of interest With the second
approach, computing time reduction is obtained by carry-
ing out only the arithmetical operations with nonzero
operands. It is based on examination of the sparsity
structure of the coefficient matrix and on generation of
a code or of a set of pointers and indices that provide the
“key” to execution of the arithmetical operations. It was
first used for power distribution network analysis and
subsequently for lumped and distributed circuit analysis.

A limitation on the use of many existing programs for
analyzing microwave circuits derives from the fact that
only two-terminal components are permitted. Because of
this, all the circuit components must be described by means
of Iumped-element equivalent circuits. For transistors at
high frequency, numerous models have been proposed [4]-
[7]. However, it is not always easy in the microwave field
to characterize active and passive components by means
of lumped-element equivalent eircuits, but it is always
possible to determine the parameters of any component
by direct measurements at its ports. In this regard it is
observed that both manual and automatic instruments
exist today that permit measurements of scattering
parameters on broad frequency bands both precisely and
very quickly [8]. In the opinion of the authors, shared
also by others [17], [9] the possibility of defining circuit
components by means of measured parameters must
therefore be considered as a necessary property of pro-
grams for microwave circuit analysis.

Alternatively, the port parameters of many passive
components (microstrip transmission lines, etc.) can be
determined in terms of their geometrical dimensions and
the electrical characteristics of the materials forming
them. In this case it is enough to insert appropriate
routines in the analysis program to calculate the compo-
nent parameters. In this paper, however, no indication is
given regarding the operation of these routines since we
consider only the problem of determining circuit per-
formance in terms of the electrical parameters.

In Section II, the formulation of circuit equations is
described when branch voltages and currents and node
voltages are considered as unknowns, and the tableau
method and the nodal admittance matrix are explained
along with the modified tableau and the mixed method.
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In Section III, the circuit equation formulation is given
when normalized waves at component ports are con-
sidered as unknowns and the connection scattering
matrix is described. Subsequently, in Section IV, the
methods based on multiport connection and, therefore, on
the computation of the port matrix of the complete cir-
cuit are given. A comparison i§ also made between the
methods, bringing out the inconveniences of some,
particularly in relation to accuracy in calculation and the
difficulties that might arise in describing the circuits.
In Section V, the sparse-matrix techniques for solving the
system of the equations are discussed. The method based
on execution code generation is dealt with in detail; this is
particularly suitable for microwave circuits since their
dimensions are not usually very great. A comparison is
also made between the computation times required to
analyze a single circuit by means of two programs, one
being based on the method of connecting components in
pairs, the other on the generation and execution of the
code that solves the system of the equations describing the
circuit.

Finally, Section VI is devoted to computation of net-
work funetion sensitivities with respeet to component
parameters.

The direct and the transpose-matrix methods are de-
scribed and a discussion is presented on the computing
effort required by each one. The equivalence that in
certain cases exists between the transpose-matrix method
and the adjoint circuit method is also shown.

To conclude, the results of analyses on some circuits are
given and the problem of component tolerance assignment
in relation to permitted performance tolerances is briefly
described. This problem is of particular interest to indus-
try, since circuit cost and mass production yield are often
greatly dependent on component value spreads.

II. Circuir AwALysis IN TERMS OF VOLTAGES AND
CURRENTS

The solution of an electrical circuit in terms of voltages
and currents may be achieved in several ways depending
on the variables assumed as unknowns. In lumped-
element circuits the variables to be computed are the
branch voltages and currents and the voltages between
each node and the reference node.

Allowing only one circuit component per branch and
applying Ohm’s law for each branch, a set of b equations
is obtained between vectors Vi and I, of branch voltages
and currents at the b branches:

«—b— —bh—

It r Y, —QI_ rfo_
_QV Zb Vb Eo
b . = (1)
W 0 I 0
‘Lo B o _
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where E; and J, are the vectors of independent voltage
and current generators; the Qy and Qr matrices are made
up of rows whose elements are all 0 except for the 1 in
the entry relative to the branch to which the row refers.
The four groups of equations derive from branches con-
taining, respectively: y elements, independent - current
sources, and voltage-controlled current sources; z elements,
independent voltage sources, and current-controlled volt-
age sources; voltage-controlled voltage sources; current-
controlled current sources. By way of example, the set of
equations describing the circuit in Fig. 1 is

v,
Ve

[‘0 Ym 0 0 0 000 —1 0 0
Vs

0 000y; 000 O —1 0
Vs

-1 0000 000 0 O =| Ex

0 —-1000 020 0 O0OfI 0
\ I,

Lo ~100 000 O OJ | 0 |
I
Iy

The constraints imposed by the topology supply the
other equations necessary to define the circuit com-
pletely. Applying the Kirchhoff voltage law to all circuit
branches and the Kirchhoff current law to all the circuit
nodes, except the reference node, the following two
topological relations can be obtained:

AVN"— Vb=0
AL =0

(2)
(3

where Vy is the vector of the node voltages, 4 the branch
node incidence matrix [107, and A7 its transpose. System
(2) contains b equations, each specifying the nodes be-
tween which each branch is connected. Each row of 4
thus contains 1 and —1 in the entries corresponding to
the two nodes, all the other elements being 0. System

Fig. 1. Circuit chosen as example to show set of equations obtained

by applying Ohm’s law to each branch.
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(3) contains n equations indicating which are the branches
connected to each of the n nodes excluding the reference
one. Each a;, of A has & 1 in the entries corresponding to
the branches connected to the node, the sign depending on
the branch orientation.

Collecting together systems (1)—(3) and indicating by
1 a (b X b) unit matrix, one obtains the set

n b b
— > —>
bI’_ A 0 -1 [0
nl| 0 AT 0 0
Vv : Vv
1 o —Qr Y Jo
T-| L = | L |= (4)
0 Z, —Qv E,
Vs b Vi
0 0 P 0
ILO B 0 | |0

where T is the tableau matrix of the circuit [117].

The application of sparse-matrix techniques to the
circuit equations of system (4) is the sparse-tableau
method, which has recently met with mueh approval,
particularly for the analysis of nonlinear circuits in the
time domain.

A method based on the solution of a system with
a smaller number of equations consists in assuming only
the node voltage vector Vy as unknown and in expressing
system (3) in terms of these and of branch admittances:

(5)

where Jy, is the node impressed current vector and ¥ the
nodal admittance matrix. The kth equation derives from
the application of Kirchhoff’s current law to node k.
Referring to the ecircuit in Fig. 2(a), one gets, for ex-
ample, the following equation for node 2:

-V + (yz + ys + ?/8) Vo — ysVs = J10.

YVy = Jno

(6)

Y may be obtained by means of the following rules easily
deduced from (3).

1) Each diagonal term y;; is the sum of all the ad-
mittances connected to node <.

2) Each off-diagonal term y,; is the negative sum of
all the transadmittances relative to current generators
connected to node 7, controlled by node+ voltage, and of
all the admittances connected between node ¢ and j.

The nodal admittance matrix does not lend itself to
deseribing circuits including current-dependent current
generators and dependent or independent voltage gener-
ators except by using special artifices such as the infro-
duction of extra dummy nodes and dummy components
[127{14]. By way of example, Fig. 3 shows that a cur-
rent-dependent voltage generator may be represented by
introducing two extra nodes and positive and negative
impedances [127]. These artifices, however, besides pro-
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Fig. 3. Current-dependent voltage generator and its modeling with
dummy nodes and components.

ducing an increase in the ¥-matrix size, cause the presence
of coeflicients equal to 0 on the main diagonal; this second
fact, as we shall see later, must be kept in mind when
solving system (5). Moreover, roundoff errors might
arise in the golution of (5) when, for example, the voltages
of two nodes connected by one or more branches assume
values very close to each other or when the ¥ coefficients
assume widely different values.

These inconveniences are not manifested with the
previously described tableau method. For the same
reasons the modified tableau method [157, {16] and the
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mixed method [177], which are described hereunder, are,
in some cases, preferable. In both these methods, in order
to describe the topology, circuit branches are classified
as tree branches and links.! Each link identifies a mesh
composed of the link itself and those specific tree branches
required to close the circuit. Each tree branch identifies
a cut set that consists of this tree branch itself and the

. set of links cut by a closed line [see Fig. 2(b)’]. Kirch-

hoff’s voltage law applied to the meshes and Kirchhofl’s
current law applied to the cut sets give the topological
relations

V.

[C 1] =0 (7
Vi
1]

[1t —CT] =0 (8)
11

where V., I, and V3, I, are the voltage and current vectors
of the tree branches and links, respectively; 1; and 1,
are unit matrices, C is the branch-mesh matrix in which
¢;; = =1 if the branch j is in the mesh defined by link <,
the sign depending on the branch and mesh orientation;
ci; = 0 if the tree branch is not in the mesh ¢; C7 is the
transpose of C.

Separating the variables relative to the tree branches
and the links, system (1) may be rewritten in the following
form:

I,

Vi

CH: H] = [K] (9)

V.

I |

where the meaning of the symbols H;, H;, and K can be
deduced immediately from (1).

Collecting together the topological systems (7, (8),
and the branch constitutive relations expressed by (9),
one obtains the following system:

1, 00 —CTL,] [o ]
0 1,/C- 0 V. 0
S S S —l=1-- (10)
V.
H, H, ’ K
! il L

whose coefficient matrix is the modified tableau. .
The method based on this approach, which has recently
been proposed, allows shorter computation time in its
authors’ opinion [167] compared to that required by the
complete tableau, without loss of solution accuracy. -

1 A tree is made up of a set of branches that, in the circuit graph,
make it possible to reach all the nodes without forming closed paths.
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Another method requiring tree search and the con-
sequent subdivision of the circuit branches into tree
branches and links is the well-known mixed method on
which Ecap 11 program is based [17]. The circuit branches
are subdivided into two types, y and z: generally, y
type with low admittance values and z type with low
impedance values. A tree is built up by choosing the
circuit branches in the following order: independent
voltage generators, dependent voltage generators, ¥y
branches, and z branches. Independent voltage gener-
ators may not be chosen as links, nor current genera-
tors as tree branches, since these choices might imply
a violation of the Kirchhoff laws. Thus the branches are
classified in four categories: tree admittance branches,
tree impedance branches, admittance links, and im-
pedance links. The tree admittance branch voltages and
the impedance link currents are assumed to be inde-
pendent variables, and the circuit equations are written
by applying the Kirchhoff current law for the cut sets
identified by the tree admittance branches, and the
Kirchhoff voltage law for the meshes identified by the
impedance links.

By way of example for the cut set identified by branch 2
and for the mesh identified by link 6 in the circuit of
Fig. 2(b), the following equations can be written:

?/2V2 -+ Z/a(Vz -+ Vs) -+ y7(V2 + Vs — V1) —Is—Iy=Jp

Vi+ Zels = —H, (11)
For the complete circuit the system can be written
Y. N,.| |V Tyt
. = (12)
N 2y Zl Izl Ezl

where V,. and I,; are, respectively, the tree admittance
branch voltage vector and the impedance link current
vector; Y, and N,, are the coefficient matrices deriving
from the cut-set equations, N,, and Z; the coefficient
matrices from the mesh equations; J,, is the vector of the
cut-set equivalent independent current generators, and
E., the vector of the mesh equivalent independent voltage
generators.

System (12) cannot generally be obtained by simple
rules without searching the tree or using the topological
matrices. This is not, however, the proper place to go into
greater detail and the reader is referred to the works by
Branin [107], [17].

ITI. CirculTr ANALYSIS IN TERMS OF WAVE VARIABLES

The behavior of a microwave circuit may also be de-
seribed in terms of the normalized wave variables at the
ports of the component multiports.?2 Given a circuit with
m component multiports, for each component with
scattering matrix S; the vectors a; and b; of incident and
reflected waves at its n, ports are related by the following

_ *It is always possible to transform a lumped-element network
into a circuit made up of multiports connected through pairs of
ports [18}-[21].
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equation:

bi = S,-ai. (13)

An independent generator is described, instead, by the
relation

b, = S,a, + ¢, (14)

where ¢, is the impressed wave.
Considering all the components, we have a system of
linear equations whose matrix form is

b= Sa-+t ¢ (15)
where
Q1 b1 Ct
a=\|a |, b= bz , € =] ¢C
an b.m Cm
and
St 0 0
S=]10 -8 -0 (16)

0 -0 -8,

The connections between the m components impose
constraints on the vectors a and b; in fact, incident and
reflected waves at ports j and k connected together must
satisfy the following relations (see Fig. 4):

aj:bk ak=b]-

if the normalization numbers are the same. The relations
for all the circuit component ports may be put in the form

b=Ta (17)

where I is the connection matrix whose elements are all
null except the 1’s in the entries corresponding to pairs of
adjacent ports [227]-[25].3

Substituting (17) into (15) and solving for a by setting

(18)

W=1-3S

Fig. 4. Constraints imposed by connection between adjacent ports.

31t would be easy to define the connection matrix, aiso, when
different normalization numbers are chosen for adjacent ports [26].
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we have

Wa =c¢ (19)

where ¢ is the vector of the impressed waves and W is the
connection scattering matrix. Its main diagonal elements
are the reflection coefficients at component ports; the
other W elements are all null except those relative to
ports belonging to the same component (the transmission
coefficients) and those relative to ports connected to-
gether (the I' elements). Numerical values of nonzero
elements change with the frequency except the 1’s in-
dicating connections.

IV. MurtirorT CONNECTION METHODS

Considerable reduction of computing time and memory
space requirements in analyzing large circuits can be
achieved by dividing the circuit into subcircuits and cal-
culating for each of them one of its port matrices. Sub-
sequently, the subeircuits are interconnected and, finally,
the matrix relative to the ports of the complete circuit is
determined.

A method based on these principles has been proposed
by Murray-Lasso for the BELLNAP program [12], [27]
emploving the indefinite admittance matrix, which is
simply the nodal admittance matrix defined in Section
11, but referred to a datum node outside the circuit. The
nodes of every subcircuit are divided into internal and
external. By eliminating the variables relative to the
internal nodes, one obtains the indefinite admittance
matrix relative to the external nodes.

Every indefinite admittance matrix is subdivided as
follows:

Ie Yee Yei Ve
= (20)
I Y., Y, V:

where I, and V, are the vectors of the currents and voltages
relative to the external nodes, and I; and V; are those
relative to the internal nodes. Since no generators are
connected to the internal nodes, we can take I, = 0 and,
solving with respect to V; in the second set of equations of
(20), one has

Vi= —Y¥Y;1Y.,V.. (21)
Substituting (21) in the first set of (20) one gets
I = Y.V. (22)
with
Y.=Y.— Y.Y:;'Y, (23)

which represents the indefinite admittance matrix with
respect to the external ports of each subcircuit. When the
subcircuits are connected together, the indefinite ad-
mittance matrix for the external nodes of the complete
circuit is calculated using the same procedure.

Some programs that use the S-matrix formulation
[237, [24] are also based on the same principle, that is,
on determining the port matrix of the circuit obtained by
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interconnecting a number of components. These programs
are mainly microwave circuit oriented.

Evaluation of the scattering matrix of a circuit com-
posed of multiports connected through pairs of ports in
terms of component S parameters is effected by dividing
component ports into connected and nonconnected ones.
Then by partitioning system (15) and letting ¢ = 0,
since independent generators will be considered connected
to external ports, one obtains

b, Seo Spel|
= (24)
b [ SCP SCC a c

where a,, b, and a,, b, are the normalized waves at the
p external ports and at the ¢ internal connected ones. The
constraints between connected ports yield

b, = Ta, (25)

where T is the connection matrix previously defined in
Section III. From (24) and (25), by first eliminating
b., one obtains

a. = (I — 8.)7'S,a5. (26)
Then, by eliminating a.,
b, = S,a, (27)
where
Sy = Spp + Spe(T — Ser) 1S, (28)

is the scattering matrix of the microwave circuit at its p
external ports. It can be determined in terms of the S
matrices of its component multiports by relation (28).
For a circuit comprising many components, the computing
time is, however, too long due primarily to the inversion
of a matrix with order equal to the number of connected
ports.

Great running time reduction is obtained in the program
SCAMAT [23] by connecting the m component multiports
of the complete circuit two at a time and determining the
S matrix of the resulting subcircuit every time. In such a
manner, after (m-1) applications of (28), the S matrix
of the complete network is computed. The number of
arithmetical operations necessary to compute the S
matrix for a given circuit topology depends on the order
according to which the components are connected to each
other.

In order to minimize computing time a connection
sequence based on an easily programmable rule has been
proposed that implies a number of algebraic operations at
all times very near to the minimum, whatever the circuit
topology. The rule consists of connecting every time the
two components whose resultant multiport has the
smallest number of ports.

The application of this method to circuits including
lumped elements is done by transforming every com-
ponent having 7 terminals into a multiport with n ports.
The transformation is carried out by associating a ground
terminal with each component terminal, and these
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termmal pairs are con31dered as ports [197], [20]. When
a component has one of its n terminals connected to
ground, it is considered a multiport having (n—l) ports;
all the ports in such a case derive by pairing the grouind
terminal with the other (n-1) terminals. The multiports
thus obtained are connected together to form the network.
Since the program connects only pair of ports, auxiliary
multiports that transform every node with % branches
into ‘a multiport with & ports are introduced. These
auxiliary multiports are parallel tees (Fig. 5) introduced
at the rate of (k-2) tees for every mode connecting k
branches. The introduction of the auxiliary multiports
and the transformatlon of every n—termlnal component
into an (n-1) port or n port is made automatlcally by the
program through interpretation of the input data.

In addition to the characterizing parameters, the data

for every component indicate to which nodes its terminals

are connected. The interconnection modalities between
real and auxiliary components are then found and the
connection sequence stated. After this preliminary
phase; which is performed only once for a given cireuit
with  components, the execution phase begins and con-
sists of applymg (28) (m-1) times for every frequency
point.

A similar formulation has been adopted in the program
General [9]. Tt requires the user to decompose the circuit
into wire-coupling multiports and orlglnal components,
then a formula similar to (28) is applied repeatedly,
starting from the last subnetwork. The circuit decompo-
sition required appears, however, too cumbersome for
the user.

Determination of the matrix of the multiport resulting
from the connection of two components can be effected
with more simple rules than (23) or (28) if matricial
representation of the components is suitably chosen.
Indeed, rules that determine the matrix of the multiport
resulting from the connection of two multiport com-
ponents are well known [287]. For the various types of
connections, they require the components to be defined
according to different matricial representations. The
simplicity of these connection rules has brought about
their widespread use in a number of general and special-
purpose programs [97, [297-[357]. In these programs the
matrix relative to the external ports of the complete

—O—

paraliel - Tee

[}
Fig. 5. Parallel tee as auxiliary multiport.
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circuit is determined by connecting the components in
twos, each time determining the matrix of the resulting
multiports in accordance with rules codified in library
routines. Table I shows, by way of example, some of the
most widely used rules in the case of connections between
2-port components. It may, however, happen that the
matricial representation required by the type of the con-
nection to be made may not exist for some components.
Besides, the method may call for numerous matrix trans-
formations, which sometimes cause a loss of accuracy.
The types of connections and the sequence in which they
are made are generally decided by the user. This last, ap-
parently difficult, operation is considerably simplified
by using high-level languages for circuit description. A
partlcularly mterestlng one is MARTHA, proposed by
Penfield [217, [35]. It consists of defining a certain
number of wiring operators by means of which connections
between components may be simply and concisely identi-
fied and described. The order of writing the operators
establishes the order for carrying out the connections
by the program. By way of example the simple circuit in
Fig. 6 is described using. the wiring operators shown in
Table 1. The number of wiring operators permitted by

TABLE I
Various Types of ConnNecTioN BETweEN Two PorrTs—MATRIX
OPERATIONS INVOLVED AND MARTHA WiriNg OPERATORS

~ . . MAR'!’HA
CONNECTION TYPE Wru Operation Wiring Opérs
3
A
Parallel Y=Y, +Y, wPP
v
;
ol — Z, —0
Serles - Z-2,+2, WSS
L]zl
_
N Do TN i)
Series- . H =Hx1Hz WSP
. paratlel
H
H 2
e
lel .
Par'allel- ) G= Gx*Gz WPS
- [ G,]
) G
G 2
|
Cascade ] uf | e we
S5
| —— .
8, ss S, Y
SZ

Fig, 6. Example of circuit description by means of MARTHA
language. MARTHA description: (s; WPs s2)We((ss WC 8,) WSP 85).
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MARTHA i8 such as to allow considerabie generality in the
type of circuit that may be analyzed.

V. SPARSE-MATRIX APPROACH

Many methods have been proposed for the solution of
linear systems with sparse coefficient matrices [36 -[397].
Evaluation of their efficiency is not, however, one of the
aims of this work, so the description, though brief, is
limited to the LU-factorization method [37], which is
most frequently applied in the field of electric networks.
According to this method the solution of the system
Mx = c is carried out first by factoring M into the
product of two matrices, a lower triangular matrix L and
an upper triangular matrix with ’s on the diagonal U:

1y - 0 - 0 - 0]
lkl hd lkk - O ® 0
174 . e . .

Il
!
a
It

lil M lik M lii ¢ 0

lnl * lnk * l’nz * lym

(29)
. 'l.l/jn

0 -0 - 1|

The elements of L and U are determined by recurrence
formuias as follows:

P
Ly =mag — X Lyua, 12>k
p=1
Ure = 1
1
ur = (Mr; — 2 bty /ey, 7>k (30)

p=1

for k = 1,2, --,n, where n is the matrix dimension. Then
by solving the two triangular systems

Ly=c¢ Ux=y G3))

using ‘“forward elimination” on Ly = ¢ and “back sub-
stitution” on Ux = y, the unknown vector x is obtained
[3]. This is performed by applying the recurrence
formulas:

7—1
Y = (CJ' - Z ljuyn)/liir J=12,---,n
=1

Ty = Y; — Z Uinlys Jj=nmn—1,---1 (32)
p=7t1 '

All the elements of L and U can be stored in a matrix:

Q=L+U-1 (33)

1 being unit matrix. Any gz of Q is 0 if both mj of M
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and all the products gjigix, 1 < 2 < min {j — 1,k — 1}
are 0. Therefore, the number of nonzeros in Q depends on
the ordering of rows and columns in M, as is discussed
later. The nonzeros in Q in the entries corresponding to
zeros in M are currently called *“fills.”

A great reduction in execution time is obtained with the
reduced Crout method [40], according to which only the
nonzero operands are considered in computing the non-
zeros of Q. Two different strategies are used to this end.
The first consists of creating a sequence of indices and
pointers that establish the type of operation to be carried
out and the position of the operands in the tables where
the operands are stored [41}[43]. The second method
consists of generating a no-loop no-branch code con-
taining the instructions to perform all the necessary
operations.

The second method is very fast in execution but requires
large memory space due to the need to store the generated
code and high central processing unit time to generate the
code itself. On the other hand, the first method, though
slower in execution, requires less time for preparation of
the sequence of indices and pointers and much less memory
space. Memory requirements make the code generation
method unsuitable for very large networks 'like power
distribution networks [44], while it is widespread for
electronic circuit analysis both with lumped [117], [16]
and distributed elements [25].

The solution code may be generated either in machine
language or in a high-level language such as Fortran.
In the first case it requires shorter execution time but has
the inconvenience of being machine dependent. Gener-
ation time, execution time, and storage requirements
depend on the length of the code, which depends in
turn on the number of nonzeros in Q and ¢ and, therefore,
on the number and position of nonzeros in M.

With the aim of minimizing code length, numerous re-
ordering algorithms of the M-matrix coefficients have been
proposed. In all these algorithms the aceuracy problem
must be kept in mind; this requires the rows and the
columns of the M matrix to be rearranged so that the
diagonal elements are nonzero, since they are used as
divisors in (30) and (32). To this end, depending on the
circuit matrix adopted, some rules are established to
avoid pivoting on the critical elements.

For circuits deseribed by the nodal admittance matrix
(M = Y), the diagonal term m;; represents the sum of
admittances connected to the ¢th node and, therefore, it is
different from 0 except in particular cases.* For this reason
the reordering algorithms for ¥ matrix keep these terms
on the diagonal while ordering the rows and columns to
minimize the code length. This is equivalent to circuit
node renumbering. This procedure is based on the sup-
position that nonzero elements on the ¥ diagonal are a
sufficient guarantee that the elements on the Q diagonal

4 When certain components are modeled by introducing extra
dummy nodes or dummy components, the corresponding diagonal
positions cannot be pivoted [13].
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will be nonzero. The node renumbering algorithms most
frequently used for the ¥ matrix are reported in the
following [417, [437, [44].

1) The nodes are ordered so that the number of non-
zeros in the corresponding rows are nondecreasing.

2) At every jth step the node is selected whose cor-
responding row has fewer nonzeros on the right of the
(7 — 1)th entry.

3) Select as jth step the node whose corresponding row
and column, when. used in factorization, would cause the
smallest number of fills.

For the conneetion seattering matrix W, on the other
hand, as deseribed in Section III, the diagonal elements
represent the reflection coefficients of the circuit com-
ponent ports and, therefore, being very near to 0 in
matched conditions, cannot be chosen as pivots. However,
in system (19) every row of W contains the constant 1,
deriving from T, which could be an ideal pivot because
it allows great precision, independent of frequency, and,
at the same time, divisions are avoided. In reality, roughly
half the 1’s are modified in the course of the factorization
process, but rarely do the modified values become 0 and
only in anomalous cases. This method has been adopted
in a recently realized program for microwave circuit
analysis [25] with the following ordering strategy: the
pair of rows relative to adjacent ports are considered
together and ordered so that each pair has a number of
nonzeros not greater than that of the successive one; in
every pair the row with fewer nonzeros precedes the other;
the columns are then ordered to place all the 1’s of T" on
diagonal. ,

The programs adopting the code generation techniques
are, therefore, structured in two phases. In the first, after
data input and interpretation, coefficient matrix row and
column ordering is established according to the algorithm
used and the solution code is generated. In the second
phase the matrix coefficient values are determined for
every frequency point and then the code is executed,
giving the unknown variable values in terms of which the
requested network functions are determined.

The time required for the first phase is generally very
high, but it should be remembered that for a given circuit
the code is generated only once, while the code itself is
executed many times and may be repeated at any later
time if it is stored in a permanent file. Analogous con-
siderations may be done for the structure of the programs
creating a sequence of pointers and indices.

However, for very simple circuits not requiring many
analysis repetitions, it may be more convenient both for
computing time and memory space to use programs of the
type deseribed in Section IV, whose preliminary phase is
less complex. In order to supply quantitative information
the circuit in Fig. 7, representing a thin-film strip-line
branching filter [257], has been analyzed with two pro-
grams realized by the authors: the BMT program adopting
a sparse-matrix technique and the scamar program ef-
fecting connection of multiports two at a time. The
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®)
Fig. 7. (a) Thin-film strip-line branching filter. (b) Description for
analysis program.
t 4
(secs)
15 4
104
5 +
o b T ‘ .
0 100 200
Fig. 8. Computation time required by the two programs scamar

and BMT versus number of analyses effected for branching filter
in Fig. 6. Dotted line refers to case for which execution  code
has already been generated and compiled.

relative computing time versus the number of executions
is shown in Fig. 8. ’

This figure shows that for the circuit analyzed, the first
phase of the BMT program is ten times slower, while the

~ second phase is seven times faster. Then, when more than

120 executions (different frequency points or parameters
values) are required, the code generation method is more
convenient. However, when the code is already available,
the dotted line must be considered and the convenience
of the BMT program is evident.

V1. FirsT- AND SECOND-ORDER SENSITIVITY

A performance generally required of circuit analysis
programs is the computation of the partial derivatives
(sensitivities) of the network functions with respect to the
variables on which the component parameters depend. It
is useful for the designer to know them both in order to
have an indication of circuit criticality relative to the
variables themselves, and in order to utilize the sensi-
tivities in calculating particular network functions (group
delay, for example) and in optimization processes.

Simple determination of the sensitivities by means of
the variational method may cause computation errors
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that depend on the intrinsic precision of the program and
the increment chosen for the independent wvariables.
Computing time may, besides, be too high when deriva-
tives with respect to many parameters are requested. It is
for these reasons that other techniques are used in the
important programs; among these the adjoint circuit
method has met with much favor in recent years [45]-
[617. It must, however, be noted that the most convenient
technique depends on the analysis method used by the
program. The best known among recently proposed
methods are illustrated below, and a comparison is made
between them in relation to the adopted method of
analysis. )

Where circuit analysis consists of the solution of a
system of the type

Mx =c¢ (34)

where x is the circuit variable vector (voltages, currents,
or normalized waves) and M is a matrix that takes
topology and circuit composition into account (nodal
admittance, matrix, mixed matrix, connection scattering
matrix, ete.), computation of the partial derivatives of the
vector x with respect to any single parameter p on which
the circuit components depend may be carried out by dif-
ferentlatlng (34): :

x . (35)
p  op ap
This equation may be solved for 8x/ dp by evaluating the
right-hand side vector:
6M dc

36
T o (36)

¢ =

which may be calculated when 0M/dp and dc/dp are
known and x, by solving (34), has been determined.

Determination of vector dx/dp by means of (35) re-
quires only forward and back (FB) substitution since the
LU factorization already done for the solution of (34)
may be utilized. If sparse-matrix techniques are adopted,
FB substitution may be performed by executing the same
code (or the same set of pointers and indices) as that
generated for the analysis; provided that the code has
been generated thhout( considering the sparsity of
vector ¢, since its sparseness structure is generally dif-
ferent from that of ¢’ , ,

This direct method permits determination of the
sensitivity of all the elements of x with respect to a single
parameter p, and the ecomputing effort involved is only
slightly higher than that of the original analysis. If the
sensitivities of all elements of x are requestéd with respegt
to several parameters, as many FB substltutlons are
required as there are parameters.

If the sensitivities of only one element of x are requested
with respect to many parameters, it may be convenient
to adopt the adjoint network method proposed by Director
and Rohrer [457, [46], deriving it from Tellegen’s theorem
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[62], [63]. This method has in recent years been subject

of numerous studies [45]-[61] and the reader is referred

to them for detailed information. Here, a method is pre-

sented that provides (in certain cases) results similar to

the adjoint method. The derivation is quite straight-

forward and involves only matrix operations [257, [65].
Indicating by

y*=[0 0-

a row vector whose elements are all null except a 1 in
position j, we have

0 1 0---0] (37)

a(l'j ax
— =y . 38
ap Y’ P (38)

Keeping (35) in mind this becomes
dz, (aM ac) ( ac)
— = TM X — — 39
P ap e 3 x+ ap (39)
having indicated by

g = (v/MH)T = (M")'y;
the vector of the unknowns of a system of equations whose
coefficient matrix is equal to the transpose of that char-
acterizing the circuit being analyzed and having vy; as

its right-hand side vector.
Supposing for simplicity d¢/dp = 0, (39) is reduced to

LM

X
ap dp

(40)

9% (41)

which can be used to compute sensitivity of variable x;
with respect to any p parameter when vectors x and §;
have been computed by solving systems (34) and (40).

This method, which in the following is called the trans-
pose-matrix method, is in some cases similar to the
adjoint method. In fact considering, for instance, the con-
nection scattering matrix (that is, letting M = W) we
have from (18)

Wr = (F—8)T=r—87

being I' = I'T; thus W™ may be interpreted as the con-
nection scattering matrix of a new ecircuit with the same
topology as the one being examined and components
whose scattering matrices are the transposes of the cor-
responding ones in the original circuit. In this case, §,7
represents the vector of the incident waves at the new
circuit component ports with excitations stated by ;.
The equivalence between this method and the adjoint
circuit method is then evident [48].

The same consideration can be made with reference to
the nodal admittance matrix. Indeed, §; in this case may
be interpreted as the nodal voltage vector of the adjoint
circuit, which, as it is known, has a matrix equal to the
transpose of the original one and is excited as established
by y; [51]. ~

When the mixed method is adopted for analysis, the
transpose of the coefficient matrix in (12) does not
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coincide with the matrix of the adjoint circuit due to the
sign reversals of its off-diagonal submatrices. However,
the transpose matrix method can be equally adopted and
the results are identical to those derived by means of the
adjoint network.’

In order to make the reader aware of the computing
effort in determining sensitivity with (41), we observe
that computation of §; involves only a single FB substitu-
tion [147], [64] for the following reason. Since

MT = (LU)T = UTL" = £

it is not necessary to repeat factorization in order to
compute £ and U, as these are obtainable through
transposition of U and L, respectively. When sparse-
matrix techniques are used with code generation it should
be noted that the FB-substitution code generated for the
analysis cannot be utilized ; thus a modified code should be
generated for the FB substitution applied to £ and .
If, however, M” has the same sparseness structure as M,
differing at the most in the values of some nonzero coef-
ficients, then §, can be determined starting from M7 by
executing the LU-factorization and FB-substitution
codes already generated for the analysis. When M repre-
sents the connection scattering matrix W and if all the
parameters of the components are considered to be dif-
ferent from 0 the analysis code may be used; the same
thing takes place with the nodal admittance matrix if we
consider as nonzero the coefficients in locations sym-
metrical to those of the dependent generators. Thus with
two complete code executions in addition to the sup-
plementary operations® required by (41), the sensitivity
of one variable z; may be computed for many parameters.

A quantitative comparison between this method and
the direet one cannot be effected in general. It is, however,
noted that the direct method is preferable when the
derivatives of many variables with respect to few param-
eters are required, while the transpose-matrix method is
more convenient when the derivatives of few variables
with respect to many parameters are to be calculated.
However, it is observed that if sparse-matrix techniques
are used, the choice between the two methods may be
conditioned by other factors such as, for example, general
organization of the program.

Calculation of sensitivity by the direct method and the
adjoint circuit are not equally convenient when multiport
connection methods, deseribed in Section IV, are adopted
for the analysis. In this case, in fact, the variables relative
to internal nodes or ports of the circuit are not normally
calculated. It is, however, always possible to include
routines in the program that, on the basis of suitable
algorithms [56 7, [577], [66 ], make it possible to calculate
the voltage and currents or the wave variables relative to
the internal ports in terms of component parameters
and of the impressed vectors. These routines may, how-

5 See Branin [65] for a detailed discussion.
¢ The sparsity of dM/dp and dc/dp may be taken into account.
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ever, bring about a considerable increase in program
complexity and thus, considering also that these programs
are usually utilized for analyzing circuits that are not too
large and that have a particular topology, it may be con-
venient to do the sensitivity computation by means of
variational techniques. These techniques have the ad-
vantage of directly supplying the sensitivity of the re-
quired network functions, which are often complicated
functions of the derivatives dx/dp.

To compute second-order sensitivity, (35) may be dif-
ferentiated with respect to a new variable ¢ and, for
simplicity, supposing ¢ independent of p and ¢, one ob-
tains the second-order sensitivity expression

2
— M—l(a M x -+ -+ a_MQf) B (42)
dpaq

dq dp
As in the first-order sensitivity case, by introducing vector
vy, the following relation is obtained:

>M oM ox oM ox
= — & ﬁ—ng(““——“““‘>
dpdq ap dq

2x

_ OM ox
apdq

op dq

&z,

9pdq

which allows computation of the second-order sensitivity
of variable z; with respect to parameters p and ¢.

The application of (43) in determining the second-crder
sensitivity is very convenient, especially when the analysis
program is based on the generation of the LU-factori-
zation and FB-substitution codes. In fact it involves two
complete code executions for determining vectors x and
£, and two more executions of the FB-substitution code
for evaluating 9x/dp and dx/dq. When the second-order
sensitivities of the same variable x; with respect to m
different parameters have to be computed, the FB-
substitution code must be exccuted m times. For a more
detailed discussion the reader is referred to [78]..

VII. ReEsurts oF SoME ANALYZED CIRCUITS

The analysis programs based on the methods described
in the preceding sections allow determination for every
assigned set of component, parameter values and for every
frequency point the values of the circuit variables con-
sidered as unknowns. In terms of these variables, the
response functions of the circuit required by the user
must be computed. For this reason, programs usually
contain library routines for computation of the most
common functions such as: voltage and current insertion
gain; input and output impedances; loss attenuation;
reflection coefficients at circuit ports; etec. It is often
interesting also to determine group delay and/or the
sensitivities of the above functions with respect to certain
parameters; to this end one must also know the partial
derivatives of the circuit variables with respect to the
parameters themselves. When the functions to be cal-
culated are not contained in the library, it must be possible
for the user to insert new specially written routines into
the program.

In order to give the reader an idea of the functions that
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Fig. 9. Computed transmission coefficients Sz and Se; of branching
filter in Fig. 6.

may be requested, the results of the analyses carried out
by the authors on some circuits are reported. Numerous
other examples of considerable interest are described in
the works mentioned in the References.

With reference to the circuit already shown in Fig. 7
representing a branching filter implemented on an alumina
ceramic substrate by thin-film technology, the amplitudes
of the transmission coefficients S; and Sxa have been
computed and plotted versus frequency in Fig. 9. The
analysis was done with the BMT program, which utilizes
the connection scattering matrix W to describe the circuit
and adopts the sparse-matrix technique with code gener-
ation to determine the normalized wave vector. The circuit
has been described for the program as shown in Fig.
6(b), connecting port 1 to a matched generator with
impressed wave ¢, = 1, ports 2 and 3 to matched loads,
and all the other ports to open-circuit terminations. The
transmission coefficients S and 83 coincide, in this case,
with the waves b, and b; reflected by ports 2 and 3:

S21 = (bZ)a1=1 S31 = (b3)a1=1~

The condition a; = 1 is imposed by the generator con-
nected to port 1. The § parameters of the coupled-trans-
mission microstrip have been computed by means of
routines [67] associated to the program in terms of the
geometric dimensions and electrical characteristics. For
the same circuit, using the direct method illustrated in
Section VI, computations have been made for group delay:

_ % _ Im(l— 6b3>
s dw bz Ow

where 8351 = < b; and the magnitude sensitivity M. with
respect to the permittivity ¢ of the ceramic substrate is

al
_n[bgl =€Re[1—a—l)3].
bg de

dlne
The computed results are shown in Fig. 10.
The circuit in Fig. 11 has been analyzed by the scaMAT
program, which is based on the multiport connection
method after transformation of the cireuit components

M, =
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Fig. 10. (a) Group delay 73 and (b) sensitivity M., with respect
to permittivity e of transmission coeflicient S;, of filter in Fig. 6
versus frequency.
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Fig. 11. Broad-band transistor amplifier for 960-channel FDM
system (courtesy of Telettra Laboratory).

into multiports by means of the introduction of auxiliary
multiports. It represents a broad-band transistor amplifier
for a 360-channel frequency division multiplexing (FDM)
system. Transistors and transformers have been char-
acterized by measured parameters. The computed voltage
insertion gain G and return losses p; and py at input and
output ports are shown in Fig. 12. In the same figure the
values measured at several frequency points are also
given; the discrepancy between computed and measured
values are due to the inability of the instrument to
meagsure very high values of return loss.
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An application of analysis programs as routines of larger
programs is supplied with reference to the circuit in Fig.
13, which represents a microstrip negative-resistor tran-
sistor amplifier tunable in the band 2.05-2.35 GHaz, the
envelope of its computed tuned voltage insertion gain
being shown in Fig. 14. For this amplifier the transistor
parameter tolerances and the production yield of a large
number of circuits had to be determined given the assigned
tolerances of permittivity e and thickness 6 of the ceramic
substrate and the specified circuit performance [757].
These are expressed by the following relations: a) tuned
insertion gain ¢ = 12-16 dB in the RF band B = 2.05—
2.35 GHz; b) 1-dB bandwidth B, > 50 MHz at any
tuning frequency; ¢) tunability in the whole RF band by
a trimmer capacitor Cyn = 0.2-2 pF.

To this end, the acceptable regions have been de-
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Fig. 13. Thin-film strip-line negative-resistance transistor amplifier
(courtesy of Telettra Laboratory).
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Fig. 14. Envelope of 'computed tuned voltage insertion gain of
amplifier in Fig. 12.
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Fig. 15.  Contours of acceptable regions in (¢,8) plane for circuit in
Fig. 12, with three different transistors.

termined in the plane (¢,8) and for three transistors T,
Te, and T with a program that, by means of repeated
analyses (effected with BMT) searches for the contours of
these regions. These eontours are shown in Fig. 15 where
the region of the possible values of € and 6 is shaded. Tt is
seen from the same figure that since the whole area lies
within the acceptable region relative to T, the production
yield is 100 percent, while it is almost completely non-
existent for transistors T and Ts. In this way it has been
possible to determine the admissible tolerances for the
transistor parameters.

The component tolerance assignment in relation to a
given production yield is a problem being studied at
present, as can be seen from recently published works
[6871-77]. For this, as in the case of op’gimization prob-
lems, it is very important that the programs for network
function computation and the respective sensitivity be
particularly fast, as . is possible by adopting solution
methods based on the sparse-matrix techniques described
above.

VIII. CoNCLUSIONS

The methods most frequently adopted by analysis
programs of linear circuits in frequency domain have been
described, giving greater attention to those best suited
for use in microwayve circuits. A comparison of the methods
has been made emphasizing execution speed as well as
limitations imposed on the component nature and the
circuit topology.
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Section V has been dedicated to the solution methods
based on sparse-matrix techniques.

Determination of sensitivity by the direct and the
transpose-matrix methods has been dealt with, and the
convenience of using one or the other method in relation
to the number of parameters and analysis methods has
been discussed.

In Section VII some examples of analyzed circuits have
been shown, referring, in particular, to the problem of
component tolerance assignment.

ACKNOWLEDGMENT

The authors wish to thank the reviewers and Dr. M.
Blasgen of the IBM T. J. Watson Center, Visiting Profes-
sor of the University of Bologna, for useful suggestions, and
Prof. G. Vannuechi, Director of Telettra Laboratory, for
giving permission to publish the analyzed circuits.

RerERENCES

[1] P. E. Green, M. K. McPhun, M. A. Murray-Lasso, and A. E.
Smoll, “Automatic general-purpose microwave circuit analysis
programs (Panel Discussion),”” IEEE Trans. Microwave Theory
Tech. (Special Issue on Computer-Oriented Microwave Prac-
tices), vol. MTT-17, pp. 527-533, Aug. 1969.

[2] M. L. Dertouzos, G. P. Jessel, and J. R. Stinger, “CIRCAL-2:
General-purpose on-line circuit design,” Proc. IEEE (Special
Issue on Computers in Design), vol. 60, pp. 39-48, Jan. 1972.

[38] D. A, Calahan, Computer Aided Circuit Design. New York:
McGraw-Hill, 1972.

[4] W. Baechtold, W. Kotyeczka, and M. J. O. Strutt, “Com-

puterized calculation of small signal and noise properties of

microwave transistors,” IEEE Trans. Microwave Theory Tech.

(Special Issue on Computer-Oriented Microwave Practices), vol.

MTT-17, pp. 614-619, Aug. 1969.

G. J. Herskovitz and R. B. Shilling, Ed., Semiconductor Device

Modeling for Computer-Aided Destgn. New York: McGraw-

Hill, 1972.

[6] R. 1. Ollins and 8. J. Ratner, “Computer-aided design and
optimization of a broad-band high-frequency monolithic
amplifier,”” IEEE J. Solid-Siate Circuits (Special Issue on
Analog Integrated Circuits), vol. SC-7, pp. 487-492, Dec. 1972.

[7] Proc. Symp. Essential Characteristics of Semiconductor Devices
and Methods of Measurements (Palermo, Italy, Dec. 1972) (in
Italian).

(8] Hewlett-Packard, Application Note 117-1, 1969.

[9] P. Bodharamik, L. Besser, and . W. Newcomb, “Two scatter-
ing matrix programs for active circuit analysis,” IEEE Trans.
Cireuit Theory (Special Issue on Active and Digital Networks),
vol. CT-18, pp. 610-619, Nov. 1971.

[10] F. H. Branin, Jr., “Computer methods of network analysis,”
Proc. IEEE (Special Issue on Computer-Aided Design), vol. 55,
pp- 1787-1801, Nov. 1967.

[11] G. D. Hatchel, R. K. Brayton, and F. G. Gustavson, “The

sparse tableau approach to network analysis and design,”

LEEE Trans. Ctreuit Theory (Special Issue on Computer-Aided

Circuit Design), vol. CT-18, pp. 101-113, Jan. 1971.

M. A. Murray-Lasso, ‘“Black-box models for linear integrated

circuits,” IEEE Trans. Educ. (Special Issuec on Educational

Aspects of Circuit Design by Computer—I), vol. E-12, pp. 170~

180, Sept. 1969.

[13] D. A. Calahan, “Numerical considerations for implementation
of a nonlinear transient circuit analysis program,” TEEE Trans.
Circuit Theory (Special Issue on Computer-Aided Circuit Design),
vol. CT-18, pp. 66-73, Jan. 1971.

[14] L. Nagel and R. A. Rohrer, “Computer analysis of nonlinear

circuits, excluding radiation (CANCER),” IEEE J. Solid-State

Circuits (Special Issue on Computer-Aided Circwit Analysis and

Device Modeling), vol. SC-6, pp. 166-182, Aug. 1971.

W.T. Weeks, A. J. jimenez, G. W. Mahoney, H. Qassemzadah,

and T. R. Scott, “Network analysis using a sparse tableau

with tree selection to increase sparseness,” in Proc. 1973 IEEE

Int. Symp. Circuit Theory (Toronto, Canada, 1973), pp. 165-168.

[16] W. T. Weeks et al., “Algorithms for ASTAP—A network-
analysis program,” IEEE Trens. Circuit Theory (Special Issue

[5

[15

=

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1974

on Computer-Aided Design) (Corresp.), vol. CT-20, pp. 628-634,
Nov. 1973.

[17] F. H. Branin, Jr., G. R. Hoggett, R. L. Lunde, and L. E. Kugel,
“BCAP II—A new electronic circuit analysis program,” IEEE
J. Solid-State Circuits (Special Issue on Computer-Aided Circuit
Analysis and Device Modeling), vol. SC-4, pp. 146-166, Aug.
1971.

[18] E. DeCastro, Applied Electronics (in Italian), preliminary ed.
Torino, Ttaly: UTET, 1974.

[19] V. A. Monaco and P. Tiberio, “A method for automatic scatter-
ing matrix computation of a lumped, linear network,” Alia
Freq., vol. 38, pp. 906-912, Nov. 1969.

, “On the transformation of a lumped element linear net-
work into a circuit composed of multiports,” Alta Freq., vol.
38, pp. 1013-1014, Nov. 1970.

[21] P. Penfield, Jr., ‘“Description of electrical networks using
wiring operators,” Proc. IEEE (Special Issue on Computers in
Design), vol. 60, pp. 49-53, Jan. 1972,

[22] G. C. Corazza. ‘“‘Scattering matrix,” (in Italian), Alta Freq.,
vol. 32, pp. 393-414, June 1963.

[23] V. A. Monaco and P. Tiberio, ‘“Automatic scattering matrix
computation of microwave circuits,” Alta Freq., vol. 39, pp.
50-64, Feb. 1970.

, “A computer program for circuit analysis from de to
‘microwave using scattering parameters,” in Dig. Tech Papers
IEEE Symp. Circuit Theory (Dec. 1970), pp. 119-120.

[25] F. Bonfatti, V. A. Monaco, and P. Tiberio, “Microwave circuit
analysis by sparse matrix techniques,” presented at the IEEE
G-MTT Int. Microwave Symp., Boulder, Colo., June 1973; also
this issue, pp. 264-269.

[26] H. J. Carlin, “The scattering matrix in network theory,” IRE
Trans. Circutt Theory (Scattering Matriz Issue), vol. CT-3, pp.
88-97, June 1956.

[27] M. A. Murray-Lasso, ‘“‘Analysis of linear integrated circuits by
digital computer using black-box techniques,” in Compuier-
Atded Iniegrated-Circutt Design, G. J. Herskowitz, Ed. New
York: MeGraw-Hill, 1968, pp. 113-159. "

[28] L. P. Huelsman, Circuits, Mairices, and Linear Vector Spaces.
New York: McGraw-Hill, 1963.

[29] L. Besser, “Combine 8 parameters with time-sharing,”” Electron.
Des., vol. 16, pp. 62-68, Aug. 1968.

[30] W. N. Parker, “pIPNET, a general distributed parameter net-
work analysis program,” IEEE Trans. Microwave Theory
Tech. (Special Issue on Computer-Oriented Microwave Practices),
vol. MTT-17, pp. 495-505, Aug. 1969.

[31] P. L. Green, “General purpose programs for the frequency
domain analysis of microwave circuits,” IEEE Trans. Micro-
wave Theory Tech. (Special Issue on Compuier-Oriented Micro-
wave_Practices), vol. MTT-17, pp. 506-514, Aug. 1969.

[32] T. N. Trick and J. Vlach, “Computer-aided design of broad-
band amplifiers with complex loads,” IEEE Trans. Microwave
Theory Tech., vol. MTT-18, pp. 541-547, Sept. 1970.

[33] M. E. Mokari-Bolhassan and T. N. Trick, “Computer aided
design of distributed-lumped-active networks,” IEEE Trans.
Circuit Theory (Special Issue on Computer-Aided Circuit Design)
(Corresp.), vol. CT-18, pp. 187-190, Jan. 1971.

[34] V. G. Gelnovatch and I. L. Chase, “DEMON: An optimal seeking
computer program for the design of microwave circuits,” IEEE
J. Solid-State Circuits (Special Issue on Microwave Circuits),
vol. SC-5, pp. 303-309, Dee. 1970.

[35] P. Penfield, Jr., MARTHA Userss Manual.
Mass.: MLI.T. Press, 1971.

[36] Sparse Matriz Symp. Proc. Yorktown Heights, N. Y.: IBM,
Rep. RA-1, Mar. 1969.

[37] J. K. Reid, Ed., Large Sparse Sels of Linear Equations. New
York: Academic, 1970,

[38] D. J. Rose and R. A. Willoughby, Ed., Sparse Mairices and
Their Applications. New York: Plenuym, 1972.

[39] 1. DelLotto, G. Pierini, and P. Tiberio, “Sparse matrix tech-
niques in computer-aided design,” in Proc. Int. Computing
;1Sy7néz)7 European Ass. Comput. Mach. (Davos, Switzerland, Oct.

973).

[40] F. G. Gustavson, W. Liniger, and R. A. Willoughby, “Symbolic
generation of an optimal Crout algorithm for sparse system of
Linear equations,” J. Ass. Compui. Mach., vol. 17, pp. 87-109,
Jan. 1970.

[41] W. F. Tinney and J. W. Walker, “Direct solutions of sparse
network equations by optimally ordered triangular factoriza-
tion,” IEEE Proc. (Special Issue on Computer-Aided Design),
vol. 55, pp. 1801-1809, Nov. 1967.

[42] A. Chang, “Application of sparse matrix methods in electric
power system analysis,” in Sparse Matriz Symp. Proc. York-
town Heights, N. Y.: IBM, Rep. RA-1, Mar. 1969.

[43] R. D. Berry, “An optimal ordering of electronie circuit equa-

[20]

[24]

Cambridge,



MONACO AND TIBERIO. ANALYSIS OF MICROWAVE CIRCUITS

tions for a sparse matrix solution,” IEEE Trans. Circuit Theory
(Special Issue on Computer-Aided Circuit Design), vol. CT-18,
pp. 40-50, Jan. 1971.

[44] A. M. Erisman and G. E. Spies, ‘“‘Exploiting problem character-
istics in the sparse matrix approach to frequency . domain
analysis,” IEEE Trans. Circuit Theory, vol. CT-19, pp. 260-
265, May 1972.

[45] S. W. Director and R. A. Rohrer, “Automated network de-
sign—The frequency-doman case,” IEEE Trans. Circuit
Theory, vol. CT-16, pp. 330-337, Aug. 1969.

., ‘“The generalized -adjoint network and network sensi-
tivities,”” JEEE Trans. Circuit Theory, vol. CT-16, pp. 318-323,
Aug. 1969.

{47] G. A. Richards, “Second-derivative sensitivity using the con-
cept of the adjoint network,” Electron. Lett., vol. 5, pp. 398-399,
Aug. 1969.

[48] V. A. Monaco and P. Tiberio, “On linear network scattering
matrix sensitivity,” Alia Freq., vol. 39, pp. 193-195, Feb. 1970.

[49] G. C. Temes, “Exact computation of group delay and its
sensitivities using adjoint-network concepts,” Electron. Leti.,
vol. 6, pp. 483-485, July 1970.

[50] G. C. Temes and R. N. Gadenz, “Simple technique for the
prediction of dissipation-induced loss distortion,” Electron.
Lett., vol. 6, pp. 836-837, Dec. 1970.

[51] J. W. Bandler and R. E. Seviora, “Current trends in network
optimization,” IEEE Trans. Microwave Theory Tech. (1970
Symposium Issue), vol. MTT-18, pp. 1159-1170, Dec. 1970.

[52] G. Iuculano, V. A. Monaco, and P. Tiberio, “Network sensi-
tivities in terms of scattering parameters,” Electron. Lett.,
vol. 7, pp. 53-55, Jan. 1971.

[63] J. W. Bandler and R. E. Seviora, “Computation of sensitivities
for noncommensurate networks,” IEEE Trans. Circuit Theory
(Special Issue on Computer-Aided Circuit Design) (Corresp.),
vol. CT-18, pp. 174178, Jan. 1971.

[54] R.N. Gadenz and G. C. Temes, “Computation of dissipation in-
duced loss distortion in lumped/distributed networks,” Electron.
Lett., vol. 7, pp. 258-260, May 1971.

{55] R. A. Rohrer, L. Nagel, R. Meyer, and L. Weber, “Computa-
‘tionally efficient electronic-circuit noise calculations,” IEEE J.
Solid-State Circuits (Special Issue on Computer-Aided Circust
xlign’;zlysis and Device Modeling), vol. SC-6, pp. 204-213, Aug.

1.

[56] G. Iuculano, V. A. Monaco, and P. Tiberio, “Automatic compu-
tation of microwave circuit sensitivity coefficients,” in Proc.
{3?11) European Microwave Conf. (Stockholm, Sweden, Aug.

1).

[46]

{67] ~—, “A computer program for sensitivity and group-delay
eI\}raluation of linear networks,” Alia Freq., vol. 40, pp. 873-880,
ov. 1971.

[58] J. W. Bandler and R. E. Seviora, “Wave sensitivities of net-
works,” IEEE Trans. Microwave Theory Tech., vol. MTT-20,
pp. 138-147, Feb. 1972.

{59] R. N. Gadenz and G. C. Temes, “Efficient hybrid and state
space analysis of the adjoint network,” in Proc. 1972 IEEE
Int. Symp. Circuit Theory (Los Angeles, Calif., Apr. 1972), pp.
184188,

[60] V. A. Monaco .and P. Tiberio, “Two properties for circuit
sensitivity in terms of scattering parameters,” Electron. Lett.,
vol. 8, pp. 382-383, Aug. 1972.

[61] G. C. Temes, R. M. Ebers, and R. N. Gadenz, “Some applica-

263

tions of the adjoint network concept in frequency domain
analysis and optimization,” Comput. Aided Des., pp. 129-134,
Apr. 1972,

[62] B. D. H. Tellegen, “A general network theorem, with applica~
tions,” Philips Res. Rep., vol. 7, pp. 259-269, Aug. 1952.

[63] P. Penfield, Jr., R. Spence, and S. Duinker, “A generalized form
of Tellegen’s theorem,” IEEE Trans. Circuit Theory, vol.
CT-17, pp. 302-305, Aug. 1970.

[64] S. W. Director, “LU factorization in network sensitivity com-
putations,” IEEE Trans. Circuit Theory (Special Issue on
Computer-Aided Circuit Design) (Corresp.), vol. CT-18, pp.
184-185, Jan. 1971.

[65] F. H. Branin, Jr., “Network sensitivity and noise analysis
simplified,” IEEE Trans. Circuit Theory (Special Issue on
Large-Scale Networks), vol. CT-20, pp. 285288, May 1973.

[66] C. Rauscher, “A fast evaluation of S-parameter sensitivities,”
private communication.

[67] V. Rizzoli, “The ecalculation of scattering parameters for
coupled microstrip arrays of any cross section,” Alta Freq., vol.
42, pp. 191-199, Apr. 1973. .

[68] E. M. Butler, “Realistic design using large-change sensitivities
and performance contours,” IEEE Trans. Circuit Theory
(Spectal Issue on Computer-Aided Circuit Design), vol. CT-18,
pp. 58-66, Jan, 1971, ’

[69] E. DeCastro, G. Iuculano, and V. A. Monaco, “Component
value spread and network function tolerances: An optimal de-
sign procedure,” Alta Freq., vol. 40, pp. 867-872, Nov. 1971.

[70] J. W. Bandler, “Optimization of design tolerances using non-
linear programming,” in Proc. 6th Annu. Princeton Conf. In-
formation Sciences and Systems, 1972, pp. 655-659; also, to be
published in J. Optimiz. Theory Appl.

[71] J. F. Pinel and K. A. Roberts, ‘““T'olerance assignment in linear
networks using nonlinear programming,” in Proc. 1972 Int.
Symp. ‘Circuit Theory (Los Angeles, Calif., Apr. 1972), pp.
129-183.

[72] B. J. Karafin, “The optimum assignment of component toler-
ances for electrical networks,” Bell Syst. Tech. J., vol. 50,
pp. 1225-1242, Apr. 1972.

[73] J. W. Bandler and P. C. Liu, “Automated network design with
optimal tolerances,” IEEE Trans. Circuits Syst., vol. CAS-21.
pp. 219-222, Mar. 1974.

{74] A. R. Thorbjornsen and 8. W. Director, ‘“Computer-aided
tolerance assignment for linear circuits with correlated ele-
ment,” in Proc. 1973 Int. Symp. Circuit Theory (Toronto,
Canada, Feb. 1973).

{75] E. Marazzi, V. A. Monaco, A. M. Brini, and V. Solaro, “Com-
puter-aided realistic design of a thin-film microwave reflection-
amplifier and production yield optimization,” in Proc. 1973
Buropean Microwave Conf. (Brussels, Belgium, Sept. 1973).

[76] J. W. Bandler, “The tolerance problem in optimal design,” in
Proc. 1973 European Microwave Conf. (Brussels, Belgium,
Sept. 1973).

[77] R. N. Gadenz, G. Rezai-Fakhr, and G. C. Temes, “A method

for the computation of large tolerance effects,” IEEE Trans.

Circuit Theory (Special Issue on Computer-Aided Design), vol.

CT-20, pp. 704-708, Nov. 1973.

F. Bonfatti, V. A. Monaco, and P. Tiberio, ‘“Fast computation

of microwave circuit response functions and sensitivities,’ in

Proc. 5th Collog. Microwave Communication (Budapest,

Hungary), June 1974.

[78




